11,824 research outputs found

    A unification in the theory of linearization of second order nonlinear ordinary differential equations

    Get PDF
    In this letter, we introduce a new generalized linearizing transformation (GLT) for second order nonlinear ordinary differential equations (SNODEs). The well known invertible point (IPT) and non-point transformations (NPT) can be derived as sub-cases of the GLT. A wider class of nonlinear ODEs that cannot be linearized through NPT and IPT can be linearized by this GLT. We also illustrate how to construct GLTs and to identify the form of the linearizable equations and propose a procedure to derive the general solution from this GLT for the SNODEs. We demonstrate the theory with two examples which are of contemporary interest.Comment: 8 page

    A generalization of the S-function method applied to a Duffing-Van der Pol forced oscillator

    Full text link
    In [1,2] we have developed a method (we call it the S-function method) that is successful in treating certain classes of rational second order ordinary differential equations (rational 2ODEs) that are particularly `resistant' to canonical Lie methods and to Darbouxian approaches. In this present paper, we generalize the S-function method making it capable of dealing with a class of elementary 2ODEs presenting elementary functions. Then, we apply this method to a Duffing-Van der Pol forced oscillator, obtaining an entire class of first integrals

    A Method to Tackle First Order Differential Equations with Liouvillian Functions in the Solution - II

    Full text link
    We present a semi-decision procedure to tackle first order differential equations, with Liouvillian functions in the solution (LFOODEs). As in the case of the Prelle-Singer procedure, this method is based on the knowledge of the integrating factor structure.Comment: 11 pages, late

    A solvable model of the evolutionary loop

    Full text link
    A model for the evolution of a finite population in a rugged fitness landscape is introduced and solved. The population is trapped in an evolutionary loop, alternating periods of stasis to periods in which it performs adaptive walks. The dependence of the average rarity of the population (a quantity related to the fitness of the most adapted individual) and of the duration of stases on population size and mutation rate is calculated.Comment: 6 pages, EuroLaTeX, 1 figur

    Solving 1ODEs with functions

    Full text link
    Here we present a new approach to deal with first order ordinary differential equations (1ODEs), presenting functions. This method is an alternative to the one we have presented in [1]. In [2], we have establish the theoretical background to deal, in the extended Prelle-Singer approach context, with systems of 1ODEs. In this present paper, we will apply these results in order to produce a method that is more efficient in a great number of cases. Directly, the solving of 1ODEs is applicable to any problem presenting parameters to which the rate of change is related to the parameter itself. Apart from that, the solving of 1ODEs can be a part of larger mathematical processes vital to dealing with many problems.Comment: 31 page
    • …
    corecore