11,824 research outputs found
A unification in the theory of linearization of second order nonlinear ordinary differential equations
In this letter, we introduce a new generalized linearizing transformation
(GLT) for second order nonlinear ordinary differential equations (SNODEs). The
well known invertible point (IPT) and non-point transformations (NPT) can be
derived as sub-cases of the GLT. A wider class of nonlinear ODEs that cannot be
linearized through NPT and IPT can be linearized by this GLT. We also
illustrate how to construct GLTs and to identify the form of the linearizable
equations and propose a procedure to derive the general solution from this GLT
for the SNODEs. We demonstrate the theory with two examples which are of
contemporary interest.Comment: 8 page
A generalization of the S-function method applied to a Duffing-Van der Pol forced oscillator
In [1,2] we have developed a method (we call it the S-function method) that
is successful in treating certain classes of rational second order ordinary
differential equations (rational 2ODEs) that are particularly `resistant' to
canonical Lie methods and to Darbouxian approaches. In this present paper, we
generalize the S-function method making it capable of dealing with a class of
elementary 2ODEs presenting elementary functions. Then, we apply this method to
a Duffing-Van der Pol forced oscillator, obtaining an entire class of first
integrals
A Method to Tackle First Order Differential Equations with Liouvillian Functions in the Solution - II
We present a semi-decision procedure to tackle first order differential
equations, with Liouvillian functions in the solution (LFOODEs). As in the case
of the Prelle-Singer procedure, this method is based on the knowledge of the
integrating factor structure.Comment: 11 pages, late
A solvable model of the evolutionary loop
A model for the evolution of a finite population in a rugged fitness
landscape is introduced and solved. The population is trapped in an
evolutionary loop, alternating periods of stasis to periods in which it
performs adaptive walks. The dependence of the average rarity of the population
(a quantity related to the fitness of the most adapted individual) and of the
duration of stases on population size and mutation rate is calculated.Comment: 6 pages, EuroLaTeX, 1 figur
Solving 1ODEs with functions
Here we present a new approach to deal with first order ordinary differential
equations (1ODEs), presenting functions. This method is an alternative to the
one we have presented in [1]. In [2], we have establish the theoretical
background to deal, in the extended Prelle-Singer approach context, with
systems of 1ODEs. In this present paper, we will apply these results in order
to produce a method that is more efficient in a great number of cases.
Directly, the solving of 1ODEs is applicable to any problem presenting
parameters to which the rate of change is related to the parameter itself.
Apart from that, the solving of 1ODEs can be a part of larger mathematical
processes vital to dealing with many problems.Comment: 31 page
- …