12 research outputs found
Hybrid Correlation and Causal Feature Selection for Ensemble Classifiers
PC and TPDA algorithms are robust and well known prototype algorithms, incorporating constraint-based approaches for causal discovery. However, both algorithms cannot scale up to deal with high dimensional data, that is more than few hundred features. This chapter presents hybrid correlation and causal feature selection for ensemble classifiers to deal with this problem. Redundant features are removed by correlation-based feature selection and then irrelevant features are eliminated by causal feature selection. The number of eliminated features, accuracy, the area under the receiver operating characteristic curve (AUC) and false negative rate (FNR) of proposed algorithms are compared with correlation-based feature selection (FCBF and CFS) and causal based feature selection algorithms (PC, TPDA, GS, IAMB)
Hybrid correlation and causal feature selection for ensemble classifiers
PC and TPDA algorithms are robust and well known prototype algorithms, incorporating constraint-based approaches for causal discovery. However, both algorithms cannot scale up to deal with high dimensional data, that is more than few hundred features. This chapter presents hybrid correlation and causal feature selection for ensemble classifiers to deal with this problem. Redundant features are removed by correlation-based feature selection and then irrelevant features are eliminated by causal feature selection. The number of eliminated features, accuracy, the area under the receiver operating characteristic curve (AUC) and false negative rate (FNR) of proposed algorithms are compared with correlation-based feature selection (FCBF and CFS) and causal based feature selection algorithms (PC, TPDA, GS, IAMB)
Embedded feature ranking for ensemble MLP classifiers
A feature ranking scheme for multilayer perceptron (MLP) ensembles is proposed, along with a stopping criterion based upon the out-of-bootstrap estimate. To solve multi-class problems feature ranking is combined with modified error-correcting output coding. Experimental results on benchmark data demonstrate the versatility of the MLP base classifier in removing irrelevant features
Embedded feature ranking for ensemble MLP classifiers
A feature ranking scheme for multilayer perceptron (MLP) ensembles is proposed, along with a stopping criterion based upon the out-of-bootstrap estimate. To solve multi-class problems feature ranking is combined with modified error-correcting output coding. Experimental results on benchmark data demonstrate the versatility of the MLP base classifier in removing irrelevant features
Bootstrap Causal Feature Selection for irrelevant feature elimination
Irrelevant features may lead to degradation in accuracy and efficiency of classifier performance. In this paper, Bootstrap Causal Feature Selection (BCFS) algorithm is proposed. BCFS uses bootstrapping with a causal discovery algorithm to remove irrelevant features. The results are evaluated by the number of selected features and classification accuracy. According to the experimental results, BCFS is able to remove irrelevant features and provides slightly higher average accuracy than using the original features and causal feature selection. Moreover, BCFS also reduces complexity in causal graphs which provides more comprehensibility for the casual discovery system. © 2013 IEEE
Bootstrap Causal Feature Selection for irrelevant feature elimination
Irrelevant features may lead to degradation in accuracy and efficiency of classifier performance. In this paper, Bootstrap Causal Feature Selection (BCFS) algorithm is proposed. BCFS uses bootstrapping with a causal discovery algorithm to remove irrelevant features. The results are evaluated by the number of selected features and classification accuracy. According to the experimental results, BCFS is able to remove irrelevant features and provides slightly higher average accuracy than using the original features and causal feature selection. Moreover, BCFS also reduces complexity in causal graphs which provides more comprehensibility for the casual discovery system. © 2013 IEEE