2 research outputs found

    Catalytic Cracking of Biodiesel Waste Using Metal Supported SBA-15 Mesoporous Catalysts

    No full text
    Palladium (Pd) and aluminium (Al) supported on SBA-15 were prepared as catalysts for cracking biodiesel waste from biodiesel production. Mesoporous silica SBA-15 was first synthesized by a hydrothermal method and then loaded with Al or Pd particles were loaded using postsynthesis or aqueous wet impregnation methods, respectively. The physical properties of the catalysts were characterized by X-ray diffraction (XRD), nitrogen (N2) adsorption, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) analyses. The catalytic cracking performance of biodiesel waste was evaluated at reaction temperatures above 400 °C under a N2 atmosphere in a batch reactor for 40 min in comparison with that for pure glycerol, where the conversion of biodiesel waste reached 86.8% with 10 wt% Pd-SBA-15 at 650 °C. The product types depended on whether the starting material was pure glycerol or biodiesel waste. The main gaseous products were carbon monoxide as synthesis gas, carbon dioxide, and 1,3-butadiene. Additionally, 2-cyclopenten-1-one and 2-propen-1-ol were major products in the liquid fraction, which can be used in pharmaceuticals and as a flame retardant, respectively

    One-Pot Catalytic Conversion of Cellobiose to Sorbitol over Nickel Phosphides Supported on MCM-41 and Al-MCM-41

    No full text
    MCM-41- and Al-MCM-41-supported nickel phosphide nanomaterials were synthesized at two different initial molar ratios of Ni/P: 10:2 and 10:3 and were tested as heterogeneous catalysts for the one-pot conversion of cellobiose to sorbitol. The catalysts were characterized by X-ray diffractometer (XRD), N2 adsorption-desorption, scanning electron microscope (SEM), transmission electron microscope (TEM), 27Al-magnetic angle spinning-nuclear magnetic resonance spectrometer (27Al MAS-NMR), temperature programmed desorption of ammonia (NH3-TPD), temperature-programmed reduction (H2-TPR), and inductively coupled plasma optical emission spectrophotometer (ICP-OES). The characterization indicated that nickel phosphide nanoparticles were successfully incorporated into both supports without destroying their hexagonal framework structures, that the catalysts contained some or all of the following Ni-containing phases: Ni0, Ni3P, and Ni12P5, and that the types and relative amounts of Ni-containing phases present in each catalyst were largely determined by the initial molar ratio of Ni/P as well as the type of support used. For cellobiose conversion at 150 °C for 3 h under 4 MPa of H2, all catalysts showed similarly high conversion of cellobiose (89.5–95.0%). Nevertheless, sorbitol yield was highly correlated to the relative amount of phases with higher content of phosphorus present in the catalysts, giving the following order of catalytic performance of the Ni-containing phases: Ni12P5 > Ni3P > Ni. Increasing the reaction temperature from 150 °C to 180 °C also led to an improvement in sorbitol yield (from 43.5% to 87.8%)
    corecore