44 research outputs found
Maximal Voluntary Activation of the Elbow Flexors Is under Predicted by Transcranial Magnetic Stimulation Compared to Motor Point Stimulation Prior to and Following Muscle Fatigue
Transcranial magnetic (TMS) and motor point stimulation have been used to determine voluntary activation (VA). However, very few studies have directly compared the two stimulation techniques for assessing VA of the elbow flexors. The purpose of this study was to compare TMS and motor point stimulation for assessing VA in non-fatigued and fatigued elbow flexors. Participants performed a fatigue protocol that included twelve, 15 s isometric elbow flexor contractions. Participants completed a set of isometric elbow flexion contractions at 100, 75, 50, and 25% of maximum voluntary contraction (MVC) prior to and following fatigue contractions 3, 6, 9, and 12 and 5 and 10 min post-fatigue. Force and EMG of the bicep and triceps brachii were measured for each contraction. Force responses to TMS and motor point stimulation and EMG responses to TMS (motor evoked potentials, MEPs) and Erb's point stimulation (maximal M-waves, Mmax) were also recorded. VA was estimated using the equation: VA% = (1−SITforce/PTforce) × 100. The resting twitch was measured directly for motor point stimulation and estimated for both motor point stimulation and TMS by extrapolation of the linear regression between the superimposed twitch force and voluntary force. MVC force, potentiated twitch force and VA significantly (p < 0.05) decreased throughout the elbow flexor fatigue protocol and partially recovered 10 min post fatigue. VA was significantly (p < 0.05) underestimated when using TMS compared to motor point stimulation in non-fatigued and fatigued elbow flexors. Motor point stimulation compared to TMS superimposed twitch forces were significantly (p < 0.05) higher at 50% MVC but similar at 75 and 100% MVC. The linear relationship between TMS superimposed twitch force and voluntary force significantly (p < 0.05) decreased with fatigue. There was no change in triceps/biceps electromyography, biceps/triceps MEP amplitudes, or bicep MEP amplitudes throughout the fatigue protocol at 100% MVC. In conclusion, motor point stimulation as opposed to TMS led to a higher estimation of VA in non-fatigued and fatigued elbow flexors. The decreased linear relationship between TMS superimposed twitch force and voluntary force led to an underestimation of the estimated resting twitch force and thus, a reduced VA
The Use of Elastic Resistance Bands to Reduce Dynamic Knee Valgus in Squat-Based Movements: A Narrative Review
An elastic band wrapped around the distal thighs has recently been proposed as a method for reducing dynamic knee valgus (medial movement of the knee joint in the frontal/coronal plane) while performing squats. The rationale behind this technique is that, by using an external force to pull the knees into further knee valgus, the band both exaggerates the pre-existing movement and provides additional local proprioceptive input, cueing individuals to adjust their knee alignment. If these mechanisms are true, then elastic bands might indeed reduce dynamic knee valgus, which could be promising for use in injury prevention as excessive knee valgus may be associated with a greater risk of sustaining an ACL rupture and/or other knee injuries. Due to this possibility, certain athletic populations have already adopted the use of elastic bands for training and/or rehab, despite a limited number of studies showing beneficial findings. The purpose of this narrative review is to examine current literature that has assessed lower limb muscle activity and/or lower limb kinematics performance on squat-based movements with or without an elastic band(s). Importantly, this paper will also discuss the key limitations that exist in this area, propose suggestions for future research directions, and provide recommendations for training implementations.
# Level of Evidence
Effect of an inverted seated position with upper arm blood flow restriction on measures of elbow flexors neuromuscular performance
Purpose
The objective of the investigation was to determine the concomitant effects of upper arm blood flow restriction (BFR) and inversion on elbow flexors neuromuscular responses.
Methods
Randomly allocated, 13 volunteers performed four conditions in a within-subject design: rest (control, 1-min upright position without BFR), control (1-min upright with BFR), 1-min inverted (without BFR), and 1-min inverted with BFR. Evoked and voluntary contractile properties, before, during and after a 30-s maximum voluntary contraction (MVC) exercise intervention were examined as well as pain scale.
Results
Inversion induced significant pre-exercise intervention decreases in elbow flexors MVC (21.1%, = 0.48, p = 0.02) and resting evoked twitch forces (29.4%, = 0.34, p = 0.03). The 30-s MVC induced significantly greater pre- to post-test decreases in potentiated twitch force ( = 0.61, p = 0.0009) during inversion (↓75%) than upright (↓65.3%) conditions. Overall, BFR decreased MVC force 4.8% ( = 0.37, p = 0.05). For upright position, BFR induced 21.0% reductions in M-wave amplitude ( = 0.44, p = 0.04). There were no significant differences for electromyographic activity or voluntary activation as measured with the interpolated twitch technique. For all conditions, there was a significant increase in pain scale between the 40–60 s intervals and post-30-s MVC (upright<inversion, and without BFR<BFR).
Conclusion
The concomitant application of inversion with elbow flexors BFR only amplified neuromuscular performance impairments to a small degree. Individuals who execute forceful contractions when inverted or with BFR should be cognizant that force output may be impaired
The effects of noise and contraction intensity on vigilance performance
There were two major objectives for this thesis: 1) to integrate the existing literature based on vigilance, noise, and neuromuscular fatigue and 2) to determine the effects of muscle contraction intensity, neuromuscular fatigue, and noise on the performance of complex and simple vigilance tasks. Vigilance or an individual's state of physiological or psychological readiness to mediate performance when reacting to a stimulus can be affected simultaneously by noise and neuromuscular stimuli. Noise exposure and muscle contraction have been shown to both negatively and positively affect vigilance performance. However, this contradiction may be a result of differences in muscle contraction and noise intensities, durations, and type as well as the complexity of the vigilance task. It was determined in the present experiment that continuous noise at an intensity of 95 dB (A) impairs both simple and to a greater extent complex vigilance task performance. Isometric muscle contractions at 5% and 20% of a maximum voluntary contraction also impaired simple and complex vigilance task performance. There did not seem to be an interaction effect between noise and contraction intensity
Pain pressure threshold of a muscle tender spot increases following local and non-local rolling massage
Background
The aim of the present study was to determine the acute effect of rolling massage on pressure pain threshold (PPT) in individuals with tender spots in their plantar flexor muscles.
Methods
In a randomized control trial and single blinded study, tender spots were identified in 150 participants’ plantar flexor muscles (gastrocnemius or soleus). Then participants were randomly assigned to one of five intervention groups (n = 30): 1) heavy rolling massage on the calf that exhibited the higher tenderness (Ipsi-R), 2) heavy rolling massage on the contralateral calf (Contra-R), 3) light stroking of the skin with roller massager on the calf that exhibited the higher tenderness (Sham), 4) manual massage on the calf that exhibited the higher tenderness (Ipsi-M) and 5) no intervention (Control). PPT was measured at 30 s and up to 15 min post-intervention via a pressure algometer.
Results
At 30 s post-intervention, the Ipsi-R (24 %) and Contra-R (21 %) demonstrated higher (p < 0.03) PPT values compared with Control and Sham. During 15 min post-intervention, PPT was higher (p < 0.05) following Ipsi-R (19.2 %), Contra-R (15.9 %) and Ipsi-M (10.9 %) compared with Control. There was no difference between the effects of three deep tissue massages (Ipsi-R, Ipsi-M and Contra-R) on PPT.
Discussion
Whereas the increased PPT following ipsilateral massage (Ipsi-R and Ipsi-M) might be attributed to the release of fibrous adhesions; the non-localized effect of rolling massage on the contralateral limb suggests that other mechanisms such as a central pain-modulatory system play a role in mediation of perceived pain following brief tissue massage.
Conclusion
Overall, rolling massage over a tender spot reduces pain perception.
Trial registration
ClinicalTrials.gov (NCT02528812), August 19th, 2015
Differences in Supraspinal and Spinal Excitability During Various Force Outputs of the Biceps Brachii in Chronic and Non-Resistance Trained Individuals
Motor evoked potentials (MEP) and cervicomedullary evoked potentials (CMEP) may help determine the corticospinal
adaptations underlying chronic resistance training-induced increases in voluntary force production. The purpose of the study was to determine the effect of chronic resistance training on corticospinal excitability (CE) of the biceps brachii during elbow flexion contractions at various intensities and the CNS site (i.e. supraspinal or spinal) predominantly responsible for any training-induced differences in CE. Fifteen male subjects were divided into two groups: 1) chronic resistance-trained (RT), (n = 8) and 2) non-RT, (n = 7). Each group performed four sets of ,5 s elbow flexion contractions of the dominant arm at 10 target forces (from 10%–100% MVC). During each contraction, subjects received 1) transcranial magnetic stimulation, 2) transmastoid electrical stimulation and 3) brachial plexus electrical stimulation, to determine MEP, CMEP and compound muscle action potential (Mmax) amplitudes, respectively, of the biceps brachii. All MEP and CMEP amplitudes were normalized to Mmax. MEP amplitudes were similar in both groups up to 50% MVC, however, beyond 50% MVC, MEP amplitudes were lower in the chronic RT group (p,0.05). CMEP amplitudes recorded from 10–100% MVC were similar for both groups. The ratio of MEP amplitude/absolute force and CMEP amplitude/absolute force were reduced (p,0.012) at all contraction intensities from 10–100% MVC in the chronic-RT compared to the non-RT group. In conclusion, chronic resistance training alters supraspinal and spinal excitability. However, adaptations in the spinal cord (i.e. motoneurone) seem to have a greater influence on the altered CE
THE EFFECT OF STIMULUS ANTICIPATION ON THE INTERPOLATED TWITCH TECHNIQUE
The objective of this study was to investigate the effect of expected and unexpected interpolated stimuli (IT) during a maximum voluntary contraction on quadriceps force output and activation. Two groups of male subjects who were either inexperienced (MI: no prior experience with IT tests) or experienced (ME: previously experienced 10 or more series of IT tests) received an expected or unexpected IT while performing quadriceps isometric maximal voluntary contractions (MVCs). Measurements included MVC force, quadriceps and hamstrings electromyographic (EMG) activity, and quadriceps inactivation as measured by the interpolated twitch technique (ITT). When performing MVCs with the expectation of an IT, the knowledge or lack of knowledge of an impending IT occurring during a contraction did not result in significant overall differences in force, ITT inactivation, quadriceps or hamstrings EMG activity. However, the expectation of an IT significantly (p < 0.0001) reduced MVC force (9.5%) and quadriceps EMG activity (14.9%) when compared to performing MVCs with prior knowledge that stimulation would not occur. While ME exhibited non-significant decreases when expecting an IT during a MVC, MI force and EMG activity significantly decreased 12.4% and 20.9% respectively. Overall, ME had significantly (p < 0.0001) higher force (14.5%) and less ITT inactivation (10.4%) than MI. The expectation of the noxious stimuli may account for the significant decrements in force and activation during the IT
EFFECTS OF DYNAMIC AND STATIC STRETCHING WITHIN GENERAL AND ACTIVITY SPECIFIC WARM-UP PROTOCOLS
The purpose of the study was to determine the effects of static and dynamic stretching protocols within general and activity specific warm-ups. Nine male and ten female subjects were tested under four warm-up conditions including a 1) general aerobic warm-up with static stretching, 2) general aerobic warm-up with dynamic stretching, 3) general and specific warm-up with static stretching and 4) general and specific warm-up with dynamic stretching. Following all conditions, subjects were tested for movement time (kicking movement of leg over 0.5 m distance), countermovement jump height, sit and reach flexibility and 6 repetitions of 20 metre sprints. Results indicated that when a sport specific warm-up was included, there was an 0.94% improvement (p = 0.0013) in 20 meter sprint time with both the dynamic and static stretch groups. No such difference in sprint performance between dynamic and static stretch groups existed in the absence of the sport specific warm-up. The static stretch condition increased sit and reach range of motion (ROM) by 2.8% more (p = 0.0083) than the dynamic condition. These results would support the use of static stretching within an activity specific warm-up to ensure maximal ROM along with an enhancement in sprint performanc