17,809 research outputs found

    Solutions to a moving boundary problem on the Boltzmann equation

    Full text link
    Let the motion of a rarefied gas between two parallel infinite plates of the same temperature be governed by the Boltzmann equation with diffuse reflection boundaries, where the left plate is at rest and the right one oscillates in its normal direction periodically in time. For such boundary-value problem, we establish the existence of a time-periodic solution with the same period, provided that the amplitude of the right boundary is suitably small. The positivity of the solution is also proved basing on the study of its large-time asymptotic stability for the corresponding initial-boundary value problem. For the proof of existence, we develop uniform estimates on the approximate solutions in the time-periodic setting and make a bootstrap argument by reducing the coefficient of the extra penalty term from a large enough constant to zero

    Trapped ion quantum computation with transverse phonon modes

    Full text link
    We propose a scheme to implement quantum gates on any pair of trapped ions immersed in a large linear crystal, using interaction mediated by the transverse phonon modes. Compared with the conventional approaches based on the longitudinal phonon modes, this scheme is much less sensitive to ion heating and thermal motion outside of the Lamb-Dicke limit thanks to the stronger confinement in the transverse direction. The cost for such a gain is only a moderate increase of the laser power to achieve the same gate speed. We also show how to realize arbitrary-speed quantum gates with transverse phonon modes based on simple shaping of the laser pulses.Comment: 5 page

    A 14-mW PLL-less receiver in 0.18-ÎĽm CMOS for Chinese electronic toll collection standard

    Get PDF
    This is the accepted manuscript version of the following article: Xiaofeng He, et al., “A 14-mW PLL-less receiver in 0.18-μm CMOS for Chinese electronic toll collection standard”, IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 61(10): 763-767, August 2014. The final published version is available at: http://ieeexplore.ieee.org/document/6871304/ © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The design of a 14-mW receiver without phase-locked loop for the Chinese electronic toll collection (ETC) system in a standard 0.18-μm CMOS process is presented in this brief. Since the previously published work was mainly based on vehicle-powered systems, low power consumption was not the primary goal of such a system. In contrast, the presented system is designed for a battery-powered system. Utilizing the presented receiver architecture, the entire receiver only consumes 7.8 mA, at the supply voltage of 1.8 V, which indicates a power saving of at least 38% compared with other state-of-the-art designs for the same application. To verify the performance, the bit error rate is measured to be better than 10-6, which well satisfies the Chinese ETC standard. Moreover, the sensitivity of the designed receiver can be readjusted to -50 dBm, which is required by the standard.Peer reviewe
    • …
    corecore