6 research outputs found

    Elasticity, band structure, and piezoelectricity of BexZn1-xO alloys

    No full text
    Lattice constants, elasticity, band structure and piezoelectricity of hexagonal wideband gap BexZn1-xO ternary alloys are calculatedusing firstprinciples methods. The alloys' lattice constants obey Vegard's law well. As Be concentration increases, the bulk modulus and Young's modulus of the alloys increase, whereas the piezoelectricity decreases. We predict that BexZn1-xO/GaN/substrate (x = 0.022) multilayer structure can be suitable for high-frequency surface acoustic wave device applications. Our calculated results are in good agreement with experimental data and other theoretical calculations. (c) 2008 Elsevier B.V. All rights reserved

    Studies of tetragonal PbTiO3 subjected to uniaxial stress along the c-axis

    No full text
    Tetragonal PbTiO3 under uniaxial stress along the c-axis is investigated from first-principles. The structural parameters, polarization, and squares of the lowest optical phonon frequencies for E(1TO) and A(1)(1TO) modes at Gamma show abrupt changes near a stress sigma(c) of 1.04 GPa, which is related to the dramatic change of elastic constant c(33) resulting from the uniaxial stress applied along the c-axis. We also find that the uniaxial compressive stress could enhance the piezoelectric stress coefficients, whereas the uniaxial tensile stress could enhance the piezoelectric strain coefficients. It is also found that when the magnitude of uniaxial compressive stress sigma(33) is greater than 12 GPa, PbTiO3 is transformed to the paraelectric tetragonal phase

    First-Principles Study of Magnetic Properties of 3d Transition Metals Doped in ZnO Nanowires

    No full text
    The defect formation energies of transition metals (Cr, Fe, and Ni) doped in the pseudo-H passivated ZnO nanowires and bulk are systematically investigated using first-principles methods. The general chemical trends of the nanowires are similar to those of the bulk. We also show that the formation energy increases as the diameter of the nanowire decreases, indicating that the doping of magnetic ions in the ZnO nanowire becomes more difficult with decreasing diameter. We also systematically calculate the ferromagnetic properties of transition metals doped in the ZnO nanowire and bulk, and find that Cr ions of the nanowire favor ferromagnetic state, which is consistent with the experimental results. We also find that the ferromagnetic coupling state of Cr is more stable in the nanowire than in the bulk, which may lead to a higher T (c) useful for the nano-materials design of spintronics
    corecore