16,428 research outputs found

    Evolution of the Chern-Simons Vortices

    Full text link
    Based on the gauge potential decomposition theory and the Ï•\phi -mapping theory, the topological inner structure of the Chern-Simons-Higgs vortex has been showed in detail. The evolution of CSH vortices is studied from the topological properties of the Higgs scalar field. The vortices are found generating or annihilating at the limit points and encountering, splitting or merging at the bifurcation points of the scalar field Ï•.\phi .Comment: 10 pages, 10 figure

    A new topological aspect of the arbitrary dimensional topological defects

    Full text link
    We present a new generalized topological current in terms of the order parameter field ϕ⃗\vec \phi to describe the arbitrary dimensional topological defects. By virtue of the % \phi-mapping method, we show that the topological defects are generated from the zero points of the order parameter field ϕ⃗\vec \phi, and the topological charges of these topological defects are topological quantized in terms of the Hopf indices and Brouwer degrees of ϕ\phi-mapping under the condition that the Jacobian % J(\frac \phi v)\neq 0. When J(ϕv)=0J(\frac \phi v)=0, it is shown that there exist the crucial case of branch process. Based on the implicit function theorem and the Taylor expansion, we detail the bifurcation of generalized topological current and find different directions of the bifurcation. The arbitrary dimensional topological defects are found splitting or merging at the degenerate point of field function ϕ⃗\vec \phi but the total charge of the topological defects is still unchanged.Comment: 24 pages, 10 figures, Revte

    Energy-momentum for Randall-Sundrum models

    Full text link
    We investigate the conservation law of energy-momentum for Randall-Sundrum models by the general displacement transform. The energy-momentum current has a superpotential and are therefore identically conserved. It is shown that for Randall-Sundrum solution, the momentum vanishes and most of the bulk energy is localized near the Planck brane. The energy density is ϵ=ϵ0e−3k∣y∣\epsilon = \epsilon_0 e^{-3k \mid y \mid}.Comment: 13 pages, no figures, v4: introduction and new conclusion added, v5: 11 pages, title changed and references added, accepted by Mod. Phys. Lett.

    Detecting Extra Dimension by Helium-like Ions

    Full text link
    Considering that gravitational force might deviate from Newton's inverse-square law and become much stronger in small scale, we present a method to detect the possible existence of extra dimensions in the ADD model. By making use of an effective variational wave function, we obtain the nonrelativistic ground energy of a helium atom and its isoelectronic sequence. Based on these results, we calculate gravity correction of the ADD model. Our calculation may provide a rough estimation about the magnitude of the corresponding frequencies which could be measured in later experiments.Comment: 8 pages, no figures, accepted by Mod. Phys. Lett.

    Optimal time decay of the non cut-off Boltzmann equation in the whole space

    Full text link
    In this paper we study the large-time behavior of perturbative classical solutions to the hard and soft potential Boltzmann equation without the angular cut-off assumption in the whole space \threed_x with \DgE. We use the existence theory of global in time nearby Maxwellian solutions from \cite{gsNonCutA,gsNonCut0}. It has been a longstanding open problem to determine the large time decay rates for the soft potential Boltzmann equation in the whole space, with or without the angular cut-off assumption \cite{MR677262,MR2847536}. For perturbative initial data, we prove that solutions converge to the global Maxwellian with the optimal large-time decay rate of O(t^{-\frac{\Ndim}{2}+\frac{\Ndim}{2r}}) in the L^2_\vel(L^r_x)-norm for any 2≤r≤∞2\leq r\leq \infty.Comment: 31 pages, final version to appear in KR
    • …
    corecore