18,389 research outputs found

    Calculation of single-beam two-photon absorption transition rate of rare-earth ions using effective operator and diagrammatic representation

    Full text link
    Effective operators needed in single-beam two-photon transition calculations have been represented with modified Goldstone diagrams similar to the type suggested by Duan and co-workers [J. Chem. Phys. 121, 5071 (2004) ]. The rules to evaluate these diagrams are different from those for effective Hamiltonian and one-photon transition operators. It is verified that the perturbation terms considered contain only connected diagrams and the evaluation rules are simplified and given explicitly.Comment: 10 preprint pages, to appear in Journal of Alloys and Compound

    General calculation of 4f−5d4f-5d transition rates for rare-earth ions using many-body perturbation theory

    Full text link
    The 4f−5d4f-5d transition rates for rare-earth ions in crystals can be calculated with an effective transition operator acting between model 4fN4f^N and 4fN−15d4f^{N-1}5d states calculated with effective Hamiltonian, such as semi-empirical crystal Hamiltonian. The difference of the effective transition operator from the original transition operator is the corrections due to mixing in transition initial and final states of excited configurations from both the center ion and the ligand ions. These corrections are calculated using many-body perturbation theory. For free ions, there are important one-body and two-body corrections. The one-body correction is proportional to the original electric dipole operator with magnitude of approximately 40% of the uncorrected electric dipole moment. Its effect is equivalent to scaling down the radial integral \ME {5d} r {4f}, to about 60% of the uncorrected HF value. The two-body correction has magnitude of approximately 25% relative to the uncorrected electric dipole moment. For ions in crystals, there is an additional one-body correction due to ligand polarization, whose magnitude is shown to be about 10% of the uncorrected electric dipole moment.Comment: 10 pages, 1 figur

    Topology of Knotted Optical Vortices

    Full text link
    Optical vortices as topological objects exist ubiquitously in nature. In this paper, by making use of the Ï•\phi-mapping topological current theory, we investigate the topology in the closed and knotted optical vortices. The topological inner structure of the optical vortices are obtained, and the linking of the knotted optical vortices is also given.Comment: 11 pages, no figures, accepted by Commun. Theor. Phys. (Beijing, P. R. China

    Implementation of controlled SWAP gates for quantum fingerprinting and photonic quantum computation

    Get PDF
    We propose a scheme to implement quantum controlled SWAP gates by directing single-photon pulses to a two-sided cavity with a single trapped atom. The resultant gates can be used to realize quantum fingerprinting and universal photonic quantum computation. The performance of the scheme is characterized under realistic experimental noise with the requirements well within the reach of the current technology.Comment: 4 page

    A QM/MM equation-of-motion coupled-cluster approach for predicting semiconductor color-center structure and emission frequencies

    Get PDF
    Valence excitation spectra are computed for all deep-center silicon-vacancy defect types in 3C, 4H, and 6H silicon carbide (SiC) and comparisons are made with literature photoluminescence measurements. Nuclear geometries surrounding the defect centers are optimized within a Gaussian basis-set framework using many-body perturbation theory or density functional theory (DFT) methods, with computational expenses minimized by a QM/MM technique called SIMOMM. Vertical excitation energies are subsequently obtained by applying excitation-energy, electron-attached, and ionized equation-of-motion coupled-cluster (EOMCC) methods, where appropriate, as well as time-dependent (TD) DFT, to small models including only a few atoms adjacent to the defect center. We consider the relative quality of various EOMCC and TD-DFT methods for (i) energy-ordering potential ground states differing incrementally in charge and multiplicity, (ii) accurately reproducing experimentally measured photoluminescence peaks, and (iii) energy-ordering defects of different types occurring within a given polytype. The extensibility of this approach to transition-metal defects is also tested by applying it to silicon-substitutional chromium defects in SiC and comparing with measurements. It is demonstrated that, when used in conjunction with SIMOMM-optimized geometries, EOMCC-based methods can provide a reliable prediction of the ground-state charge and multiplicity, while also giving a quantitative description of the photoluminescence spectra, accurate to within 0.1 eV of measurement in all cases considered.Comment: 13 pages, 4 figures, 6 tables, 5 equations, 100 reference

    Detecting Extra Dimension by Helium-like Ions

    Full text link
    Considering that gravitational force might deviate from Newton's inverse-square law and become much stronger in small scale, we present a method to detect the possible existence of extra dimensions in the ADD model. By making use of an effective variational wave function, we obtain the nonrelativistic ground energy of a helium atom and its isoelectronic sequence. Based on these results, we calculate gravity correction of the ADD model. Our calculation may provide a rough estimation about the magnitude of the corresponding frequencies which could be measured in later experiments.Comment: 8 pages, no figures, accepted by Mod. Phys. Lett.

    Comment on "Quantum Phase Slips and Transport in Ultrathin Superconducting Wires"

    Full text link
    In a recent Letter (Phys. Rev. Lett.78, 1552 (1997) ), Zaikin, Golubev, van Otterlo, and Zimanyi criticized the phenomenological time-dependent Ginzburg-Laudau model which I used to study the quantum phase-slippage rate for superconducting wires. They claimed that they developed a "microscopic" model, made qualitative improvement on my overestimate of the tunnelling barrier due to electromagnetic field. In this comment, I want to point out that, i), ZGVZ's result on EM barrier is expected in my paper; ii), their work is also phenomenological; iii), their renormalization scheme is fundamentally flawed; iv), they underestimated the barrier for ultrathin wires; v), their comparison with experiments is incorrect.Comment: Substantial changes made. Zaikin et al's main result was expected from my work. They underestimated tunneling barrier for ultrathin wires by one order of magnitude in the exponen

    Superfluidity of fermions with repulsive on-site interaction in an anisotropic optical lattice near a Feshbach resonance

    Full text link
    We present a numerical study on ground state properties of a one-dimensional (1D) general Hubbard model (GHM) with particle-assisted tunnelling rates and repulsive on-site interaction (positive-U), which describes fermionic atoms in an anisotropic optical lattice near a wide Feshbach resonance. For our calculation, we utilize the time evolving block decimation (TEBD) algorithm, which is an extension of the density matrix renormalization group and provides a well-controlled method for 1D systems. We show that the positive-U GHM, when hole-doped from half-filling, exhibits a phase with coexistence of quasi-long-range superfluid and charge-density-wave orders. This feature is different from the property of the conventional Hubbard model with positive-U, indicating the particle-assisted tunnelling mechanism in GHM brings in qualitatively new physics.Comment: updated with published version
    • …
    corecore