17,465 research outputs found

    Generally Covariant Conservative Energy-Momentum for Gravitational Anyons

    Get PDF
    We obtain a generally covariant conservation law of energy-momentum for gravitational anyons by the general displacement transform. The energy-momentum currents have also superpotentials and are therefore identically conserved. It is shown that for Deser's solution and Clement's solution, the energy vanishes. The reasonableness of the definition of energy-momentum may be confirmed by the solution for pure Einstein gravity which is a limit of vanishing Chern-Simons coulping of gravitational anyons.Comment: 12 pages, Latex, no figure

    Topology of Knotted Optical Vortices

    Full text link
    Optical vortices as topological objects exist ubiquitously in nature. In this paper, by making use of the ϕ\phi-mapping topological current theory, we investigate the topology in the closed and knotted optical vortices. The topological inner structure of the optical vortices are obtained, and the linking of the knotted optical vortices is also given.Comment: 11 pages, no figures, accepted by Commun. Theor. Phys. (Beijing, P. R. China

    Generalized Stable Multivariate Distribution and Anisotropic Dilations

    Full text link
    After having closely re-examined the notion of a L\'evy's stable vector, it is shown that the notion of a stable multivariate distribution is more general than previously defined. Indeed, a more intrinsic vector definition is obtained with the help of non isotropic dilations and a related notion of generalized scale. In this framework, the components of a stable vector may not only have distinct Levy's stability indices α\alpha's, but the latter may depend on its norm. Indeed, we demonstrate that the Levy's stability index of a vector rather correspond to a linear application than to a scalar, and we show that the former should satisfy a simple spectral property

    Comment on "Quantum Phase Slips and Transport in Ultrathin Superconducting Wires"

    Full text link
    In a recent Letter (Phys. Rev. Lett.78, 1552 (1997) ), Zaikin, Golubev, van Otterlo, and Zimanyi criticized the phenomenological time-dependent Ginzburg-Laudau model which I used to study the quantum phase-slippage rate for superconducting wires. They claimed that they developed a "microscopic" model, made qualitative improvement on my overestimate of the tunnelling barrier due to electromagnetic field. In this comment, I want to point out that, i), ZGVZ's result on EM barrier is expected in my paper; ii), their work is also phenomenological; iii), their renormalization scheme is fundamentally flawed; iv), they underestimated the barrier for ultrathin wires; v), their comparison with experiments is incorrect.Comment: Substantial changes made. Zaikin et al's main result was expected from my work. They underestimated tunneling barrier for ultrathin wires by one order of magnitude in the exponen

    Energy-momentum for Randall-Sundrum models

    Full text link
    We investigate the conservation law of energy-momentum for Randall-Sundrum models by the general displacement transform. The energy-momentum current has a superpotential and are therefore identically conserved. It is shown that for Randall-Sundrum solution, the momentum vanishes and most of the bulk energy is localized near the Planck brane. The energy density is ϵ=ϵ0e3ky\epsilon = \epsilon_0 e^{-3k \mid y \mid}.Comment: 13 pages, no figures, v4: introduction and new conclusion added, v5: 11 pages, title changed and references added, accepted by Mod. Phys. Lett.

    Single electron control in n-type semiconductor quantum dots using non-Abelian holonomies generated by spin orbit coupling

    Full text link
    We propose that n-type semiconductor quantum dots with the Rashba and Dresselhaus spin orbit interactions may be used for single electron manipulation through adiabatic transformations between degenerate states. All the energy levels are discrete in quantum dots and possess a double degeneracy due to time reversal symmetryin the presence of the Rashba and/or Dresselhaus spin orbit coupling terms. We find that the presence of double degeneracy does not necessarily give rise to a finite non-Abelian (matrix) Berry phase. We show that a distorted two-dimensional harmonic potential may give rise to non-Abelian Berry phases. The presence of the non-Abelian Berry phase may be tested experimentally by measuring the optical dipole transitions.Comment: accepted in Phys. Rev.

    A heralded quantum gate between remote quantum memories

    Full text link
    We demonstrate a probabilistic entangling quantum gate between two distant trapped ytterbium ions. The gate is implemented between the hyperfine "clock" state atomic qubits and mediated by the interference of two emitted photons carrying frequency encoded qubits. Heralded by the coincidence detection of these two photons, the gate has an average fidelity of 90+-2%. This entangling gate together with single qubit operations is sufficient to generate large entangled cluster states for scalable quantum computing

    Thermalization and temperature distribution in a driven ion chain

    Full text link
    We study thermalization and non-equilibrium dynamics in a dissipative quantum many-body system -- a chain of ions with two points of the chain driven by thermal bath under different temperature. Instead of a simple linear temperature gradient as one expects from the classical heat diffusion process, the temperature distribution in the ion chain shows surprisingly rich patterns, which depend on the ion coupling rate to the bath, the location of the driven ions, and the dissipation rates of the other ions in the chain. Through simulation of the temperature evolution, we show that these unusual temperature distribution patterns in the ion chain can be quantitatively tested in experiments within a realistic time scale.Comment: 5 pages, 5 figure

    Self-dual Vortices in the Abelian Chern-Simons Model with Two Complex Scalar Fields

    Full text link
    Making use of ϕ\phi-mapping topological current method, we discuss the self-dual vortices in the Abelian Chern-Simons model with two complex scalar fields. For each scalar field, an exact nontrivial equation with a topological term which is missing in many references is derived analytically. The general angular momentum is obtained. The magnetic flux which relates the two scalar fields is calculated. Furthermore, we investigate the vortex evolution processes, and find that because of the present of the vortex molecule, these evolution processes is more complicated than the vortex evolution processes in the corresponding single scalar field model.Comment: 9 pages, no figure

    Scalable Quantum Networks based on Few-Qubit Registers

    Get PDF
    We describe and analyze a hybrid approach to scalable quantum computation based on an optically connected network of few-qubit quantum registers. We show that probabilistically connected five-qubit quantum registers suffice for deterministic, fault-tolerant quantum computation even when state preparation, measurement, and entanglement generation all have substantial errors. We discuss requirements for achieving fault-tolerant operation for two specific implementations of our approach.Comment: 4 pages, 3 figures (new figures 1 and 3
    corecore