17 research outputs found

    DNA methylation characteristics associated with chemotherapy resistance in epithelial ovarian cancer

    No full text
    Objective: The high mortality rate of epithelial ovarian cancer (EOC) is often attributed to the frequent development of chemoresistance. DNA methylation is a predictive biomarker for chemoresistance. Methods: This study utilized DNA methylation profiles and relevant information from GEO and TCGA to identify different methylated CpG sites (DMCs) between chemoresistant and chemosensitive patients. Subsequently, we constructed chemoresistance risk models with DMCs. The genes corresponding to candidate DMCs in chemoresistance risk models were further analyzed to identify different methylated gene symbols (DMGs) associated with chemoresistance. The DMGs that showed a strong correlation with the corresponding DMCs were analyzed through immunohistochemistry. Results: Compared to chemosensitive EOC patients, chemoresistant patients showed 423 hypermethylated CpGs and 1445 hypomethylated CpGs. The chemoresistance risk models based on DMCs have shown the improved predictive ability for chemoresistance in EOC (AUC = 65.0–76.2%). The methylations of cg25510164, cg13154880, cg15362155 and cg08665359 were strongly associated with decreased risk of chemoresistance. Conversely, the methylation of cg08872590 and cg14739437 significantly increased the risk. We identified 13 DMGs, from 47 DMCs corresponding genes, between chemosensitive and chemoresistant samples. Among the DMGs, the expression levels of DDR2 and OPCML exhibited strong correlations with the corresponding DMCs. DDR2 and OPCML both showed enhanced expression in chemoresistant ovarian microarray tissue. Conclusions: Hypomethylated CpGs may play a significant role in DNA methylation associated with chemoresistance in EOC. The epigenetic modification of DDR2 could have important implications for the development of chemoresistance. Our study provides valuable insights for future research on DNA methylation in the chemoresistance of EOC

    GosB Inhibits Triacylglycerol Synthesis and Promotes Cell Survival in Mouse Mammary Epithelial Cells

    No full text
    It has been demonstrated that the activator protein related transcription factor Finkel-Biskis-Jinkins murine osteosarcoma B (GosB) is involved in preadipocyte differentiation and triacylglycerol synthesis. However, the role of GosB in regulating the synthesis of milk fatty acid in mouse mammary glands remains unclear. This research uncovered potentially new roles of GosB in suppressing milk fatty acid synthesis. Results revealed that GosB had the highest expression in lung tissue and showed a higher expression level during nonlactation than during lactation. GosB inhibited the expression of fatty acid synthase (FASN), stearoyl-CoA desaturase (SCD), fatty acid binding protein 4 (FABP4), diacylglycerol acyltransferase 1 (DGAT1), perilipin 2 (PLIN2), perilipin 3 (PLIN3), and C/EBPα in mouse mammary gland epithelial cells (MEC). In addition, GosB reduced cellular triglyceride content and the accumulation of lipid droplets; in particular, GosB enhanced saturated fatty acid concentration (C16:0 and C18:0). The PPARγ agonist, rosiglitazone (ROSI), promoted apoptosis and inhibited cell proliferation. GosB increased the expression of Bcl-2 and protected MEC from ROSI-induced apoptosis. Furthermore, MECs were protected from apoptosis through the GosB regulation of intracellular calcium concentrations. These findings suggest that GosB may regulate mammary epithelial cells milk fat synthesis and apoptosis via PPARγ in mouse mammary glands

    Optimization of Valve Flow Characteristics Based on Improved Particle Swarm Algorithm

    No full text
    After long-term operation, the flow characteristics of the high-pressure regulating valve of a thermal power unit may be shifted to a certain extent, resulting in inconsistent changes in the total valve position and opening degree, which in turn affects the PFR function of the unit. Based on the historical operation data of a thermal power unit, the flow characteristics of the unit's high-pressure regulating valve are optimized using an improved particle swarm algorithm. By experimentally verifying the primary FM in different total valve position intervals, the influence of valve flow characteristics on the primary FM function is discussed. The results of the primary FM example show that, with the optimized valve flow characteristics, the output response index of the unit in 15 and 30 seconds is increased to 85.44% and 94.11%, respectively, which meets the assessment requirements of the grid-connected operation and management of the power plant for the primary FM, and optimizes the primary FM performance of the unit

    Associations and attributable burdens in late-life exposure to PM2.5 and its major components and depressive symptoms in middle-aged and older adults: A nationwide cohort study

    No full text
    Background: Depression in late life has been associated with reduced quality of life and increased mortality. Whether the chronic fine particular matter (PM2.5) and its components exposure are contributed to the older depression symptoms remains unclear. Method: Middle-aged and older adults (>45 years) were selected from the China Health and Retirement Longitudinal Study during the four waves of interviews. The concentrations of PM2.5 and its major constituents were calculated using near real-time data at a spatial resolution of 10 km during the study period. The depressive symptom was evaluated by the Depression Center for Epidemiologic Studies Depression (CES-D)-10 score. The fix-effect model was applied to evaluate the association between PM2.5 and its major constituents with depressive symptoms. Three three-step methods were used to explore the modification role of sleep duration against the depressive symptoms caused by PM2.5 exposure. Results: In our study, a total of 52,683 observations of 16,681 middle-aged and older adults were assessed. Each interquartile range (IQR) level of PM2.5 concentration exposure was longitudinally associated with a 2.6 % (95 % confidence interval [CI]: 1.3 %, 4.0 %) increase in the depression CES-D-10 score. Regarding the major components of PM2.5, OM, NO3-, and NH4+ showed the leading toxicity effects, which could increase the depression CES-D-10 score by 2.2 % (95 %CI: 1.0 %, 3.4 %), 2.2 % (0.6 %, 3.9 %), and 2.0 % (95 %CI: 0.6 %, 3.4 %) correspondingly. Besides, males were more susceptible to the worse depressive symptoms caused by PM2.5 and its major components exposure than female subpopulations. Shortened sleep duration might be the mediator of PM2.5-associated depressive symptoms. Conclusion: Our results suggest that long-term exposure to PM2.5 and its major components were associated with an increased risk for depressive symptoms in middle-aged and older adults. Reducing the leading components of PM2.5 may cost-effectively alleviate the disease burden of depression and promote healthy longevity in heavy pollutant countries

    circ-TFRC downregulation suppresses ovarian cancer progression via miR-615-3p/IGF2 axis regulation

    No full text
    Abstract Background Ovarian cancer (OC) is a malignancy among female globally. Circular RNAs (circRNAs) are a family of circular endogenous RNAs generated from selective splicing, which take part in many traits. Former investigation suggested that circ-TFRC was abnormally expressed in breast cancer (BC). Further, the role of circ-TFRC to the progress of OC remains unclear. So, the aim of this study was to reveal the regulatory mechanism of circ-TFRC. Methods Our team made the luciferase reporter assay to validate circ-TFRC downstream target. Transwell migration assay, 5-ethynyl-20-deoxyuridine, and cell counting kit-8 were applied to investigate both proliferation and migration. In vivo tumorigenesis and metastasis assays were performed to investigate the circ-TFRC role in OC. Results The outputs elucidated that circ-TFRC expression incremented in OC cells and tissues. circ-TFRC downregulation inhibited OC cell proliferation as well as migration in in vivo and in vitro experiments. The luciferase results validated that miR-615-3p and IGF2 were circ-TFRC downstream targets. IGF2 overexpression or miR-615-3p inhibition reversed OC cell migration after circ-TFRC silencing. Also, IGF2 overexpression reversed OC cell migration and proliferation post miR-615-3p upregulation. Conclusion Results demonstrate that circ-TFRC downregulation inhibits OC progression and metastasis via IGF2 expression regulation and miR-615-3psponging

    Identifying the causal effects of long-term exposure to PM2.5 and ground surface ozone on individual medical costs in China—evidence from a representative longitudinal nationwide cohort

    No full text
    Abstract Background There is little evidence on whether PM2.5 and ground surface ozone have consistent effects on increased individual medical costs, and there is a lack of evidence on causality in developing countries. Methods This study utilized balanced panel data from 2014, 2016, and 2018 waves of the Chinese Family Panel Study. The Tobit model was developed within a counterfactual causal inference framework, combined with a correlated random effects and control function approach (Tobit-CRE-CF), to explore the causal relationship between long-term exposure to air pollution and medical costs. We also explored whether different air pollutants exhibit comparable effects. Results This study encompassed 8928 participants and assessed various benchmark models, highlighting the potential biases from failing to account for air pollution endogeneity or overlooking respondents without medical costs. Using the Tobit-CRE-CF model, significant effects of air pollutants on increased individual medical costs were identified. Specifically, margin effects for PM2.5 and ground-level ozone signifying that a unit increase in PM2.5 and ground-level ozone results in increased total medical costs of 199.144 and 75.145 RMB for individuals who incurred fees in the previous year, respectively. Conclusions The results imply that long-term exposure to air pollutants contributes to increased medical costs for individuals, offering valuable insights for policymakers aiming to mitigate air pollution’s consequences

    Genome Sequence of Mycoplasma capricolum subsp. capripneumoniae Strain M1601

    No full text
    Mycoplasma capricolum subsp. capripneumoniae is the causative agent of contagious caprine pleuropneumonia, a devastating disease of goats listed by the World Organization for Animal Health. Here we report the first complete genome sequence of this organism (strain M1601, a clinically isolated strain from China)

    A histone H3K4me1-specific binding protein is required for siRNA accumulation and DNA methylation at a subset of loci targeted by RNA-directed DNA methylation

    No full text
    In plants, RNA-directed DNA methylation (RdDM) is a de novo DNA methylation pathway that is responsible for transcriptional silencing of repetitive elements. Here, the authors characterized a new RdDM factor, RDM15, and show that it is required for RdDM-dependent DNA methylation and siRNA accumulation at a subset of RdDM target loci
    corecore