41 research outputs found
Coupled Model of Precipitates and Microsegregation During Solidification
To understand the precipitation behavior and solidification process of micro-alloyed steel, abundant thermodynamic data of pure substances were incorporated in the coupled thermodynamic model of inclusions precipitation and solutes micro-segregation during the solidification of heat-resistant steel containing cerium. The liquid inclusions Ce2xAl2ySi1âxâyOz where 0 < x < 1, 0 < y < 1âx and z = 1âxây and their generation Gibbs free energy were first introduced to the inclusions reactions according to the Al2O3-SiO2-Ce2O3 phase diagram. Then plant trials, lab experiments and published work in the literature were taken account to valid the established model. Also, the difference of calculated results between FactSage and this model were argued. Finally, the liquid inclusions were found in the samples from experiments in the tube furnace based on the calculations by this model
Heat stress affects tassel development and reduces the kernel number of summer maize
Maize grain yield is drastically reduced by heat stress (HTS) during anthesis and early grain filling. However, the mechanism of HTS in reproductive organs and kernel numbers remains poorly understood. From 2018 to 2020, two maize varieties (ND372, heat tolerant; and XY335, heat sensitive) and two temperature regimens (HTS, heat stress; and CK, natural control) were evaluated, resulting in four treatments (372CK, 372HTS, 335CK, and 335HTS). HTS was applied from the nine-leaf stage (V9) to the anthesis stage. Various morphological traits and physiological activities of the tassels, anthers, and pollen from the two varieties were evaluated to determine their correlation with kernel count. The results showed that HTS reduced the number of florets, tassel volume, and tassel length, but increased the number of tassel branches. HTS accelerates tassel degradation and reduces pollen weight, quantity, and viability. Deformation and reduction in length and volume due to HTS were observed in both the Nongda 372 (ND372) and Xianyu 335 (XY335) varieties, with the average reductions being 22.9% and 35.2%, respectively. The morphology of the anthers changed more conspicuously in XY335 maize. The number of kernels per spike was reduced in the HTS group compared with the CK group, with the ND372 and XY335 varieties showing reductions of 47.3% and 59.3%, respectively. The main factors underlying the decrease in yield caused by HTS were reductions in pollen quantity and weight, tassel rachis, and branch length. HTS had a greater effect on the anther shape, pollen viability, and phenotype of XY335 than on those of ND372. HTS had a greater impact on anther morphology, pollen viability, and the phenotype of XY335 but had no influence on the appearance or dissemination of pollen from tassel
Influence of Al on Evolution of the Inclusions in Ti-Bearing Steel with Ca Treatment
Experimental simulations of steelmaking with different amounts of aluminum were achieved in the tube furnace at 1873 K and field scanning electron microscopy and energy dispersive X-ray spectroscopy (FE-SEM and EDX) were employed to explore the characteristics of the inclusions in Ti-bearing steel during the calcium treatment process. It was found that morphologies, chemical compositions, and the size distribution of the inclusions were obviously different before and after calcium treatment. The calcium addition need be carefully considered regarding the mass fraction of aluminum with the purpose of modifying the solid inclusions to liquid phases. The thermodynamic analysis of inclusion formation in the Al⁻Ti⁻Ca⁻O system at 1873 K was conducted, as well as transformation behaviors of inclusions including all types of solid inclusions and liquid phases during solidification. The thermodynamic equilibrium calculations are in good agreement with experimental data, which can be used to estimate inclusion formation in Ti-bearing steel
Effect of Precipitated Precursor on the Catalytic Performance of Mesoporous Carbon Supported CuO-ZnO Catalysts
As part of concepts for chemical energy storage of excess chemical energy produced from renewable sources, we investigated the performance of CuO/ZnO catalysts supported on mesoporous carbon to convert CO2 hydrogenation to methanol. In this work, mesoporous carbon was used as the catalyst support for CuO-ZnO catalysts. Four catalysts with different precipitated precursors were synthesized and analyzed by N2-physisorption, X-ray diffraction (XRD), thermogravimetric analysis (TG-DTG), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that catalyst CZ-in situ had the highest turnover frequency (TOF) (2.8 Ă 10â3 sâ1) and methanol production rate (0.8 mmol gâ1·hâ1). The catalysts for co-precipitation of copper and zinc on carbon precursors are more active. Cu/ZnO domains that are accessible to the reactant gas are another reason for the catalysts being active. The Cu-ZnO interface is crucial to methanol catalyst activity
Research on interaction and trust theory model for cockpit human-machine fusion intelligence
Based on Boydâs âObservation Orientation-Decision-Action (OODA)â aerial combat theory and the principles of operational success, an analysis of the operational division patterns for cross-generational human-machine collaboration was conducted. The research proposed three stages in the development of aerial combat human-machine fusion intelligence: âHuman-Machine Separation, Functional Coordination,â âHuman-Machine Trust, Task Coordination,â and âHuman-Machine Integration, Deep Fusion.â Currently, the transition from the first stage to the second stage is underway, posing challenges primarily related to the lack of effective methods guiding experimental research on human-machine fusion interaction and trust. Building upon the principles of decision neuroscience and the theory of supply and demand relationships, the study analyzed the decision-making patterns of human-machine fusion intelligence under different states. By investigating the correlations among aerial combat mission demands, dynamic operational limits of human-machine tasks, and aerial combat mission performance, a theoretical model of human-machine fusion interaction and trust was proposed. This model revealed the mechanistic coupling of human-machine interactions in aerial tasks, aiming to optimize the decision-making processes of human-machine systems to enhance mission performance. It provides methodological support for the design and application of intelligent collaborative interaction modes in aviation equipment
An Experimental Apparatus for Monitoring Radon during Compression of Coal/Rock Samples and Its Preliminary Application
Based on the radionuclide distributions in sedimentary coal-bearing strata, this study analyzed the microrelease mechanisms of radon in coal-bearing strata. It was found that the microrelease process includes three stages: emanation, migration, and exhalation. Based on this, an experimental apparatus was independently designed for monitoring radon during compression of coal/rock samples from coal-bearing strata, whose major components include an electrohydraulic servocontrolled rock mechanics testing system, an airtight container, coal/rock samples, radon output device, and a continuous emanometer. The developed apparatus was preliminarily utilized for uniaxial compression tests on mudstone samples taken from the #21105 coalface of the Fourth Coal Mine in Yili Coalfield, China. The test results show that before sample failure under the uniaxial compressive load (UCL), the radon concentration is negatively correlated with the applied UCL and the magnitude of imposed elastic deformation. Increasing the applied load shortens the period of stable deformation, gradually decreasing the porosity of the rock, and as a result of declining the concentration of radon emanation from the rock. Finally, suggestions for future research are proposed, including mathematical equations to express the correlations between different experimental parameters and fractal characteristics of radon release from porous media
Fusing Hyperspectral and Multispectral Images via Low-Rank Hankel Tensor Representation
Hyperspectral images (HSIs) have high spectral resolution and low spatial resolution. HSI super-resolution (SR) can enhance the spatial information of the scene. Current SR methods have generally focused on the direct utilization of image structure priors, which are often modeled in global or local lower-order image space. The spatial and spectral hidden priors, which are accessible from higher-order space, cannot be taken advantage of when using these methods. To solve this problem, we propose a higher-order Hankel space-based hyperspectral image-multispectral image (HSI-MSI) fusion method in this paper. In this method, the higher-order tensor represented in the Hankel space increases the HSI data redundancy, and the hidden relationships are revealed by the nonconvex penalized Kronecker-basis-representation-based tensor sparsity measure (KBR). Weighted 3D total variation (W3DTV) is further applied to maintain the local smoothness in the image structure, and an efficient algorithm is derived under the alternating direction method of multipliers (ADMM) framework. Extensive experiments on three commonly used public HSI datasets validate the superiority of the proposed method compared with current state-of-the-art SR approaches in image detail reconstruction and spectral information restoration
Circ_005077 accelerates myocardial lipotoxicity induced by high-fat diet via CyPA/p47PHOX mediated ferroptosis
Abstract The long-term high-fat diet (HFD) can cause myocardial lipotoxicity, which is characterized pathologically by myocardial hypertrophy, fibrosis, and remodeling and clinically by cardiac dysfunction and heart failure in patients with obesity and diabetes. Circular RNAs (circRNAs), a novel class of noncoding RNA characterized by a ring formation through covalent bonds, play a critical role in various cardiovascular diseases. However, few studies have been conducted to investigate the role and mechanism of circRNA in myocardial lipotoxicity. Here, we found that circ_005077, formed by exon 2â4 of Crmp1, was significantly upregulated in the myocardium of an HFD-fed rat. Furthermore, we identified circ_005077 as a novel ferroptosis-related regulator that plays a role in palmitic acid (PA) and HFD-induced myocardial lipotoxicity in vitro and in vivo. Mechanically, circ_005077 interacted with Cyclophilin A (CyPA) and inhibited its degradation via the ubiquitination proteasome system (UBS), thus promoting the interaction between CyPA and p47phox to enhance the activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase responsible for ROS generation, subsequently inducing ferroptosis. Therefore, our results provide new insights into the mechanisms of myocardial lipotoxicity, potentially leading to the identification of a novel therapeutic target for the treatment of myocardial lipotoxicity in the future