16,365 research outputs found

    Nonlocal Entanglement Transformations Achievable by Separable Operations

    Full text link
    For manipulations of multipartite quantum systems, it was well known that all local operations assisted by classical communication (LOCC) constitute a proper subset of the class of separable operations. Recently, Gheorghiu and Griffiths found that LOCC and general separable operations are equally powerful for transformations between bipartite pure states. In this letter we extend this comparison to mixed states and show that in general separable operations are strictly stronger than LOCC when transforming a mixed state to a pure entangled state. A remarkable consequence of our finding is the existence of entanglement monotone which may increase under separable operations.Comment: v2 has rephrased Theorem 1 and corrected Kraus operators in Theorem 2. Additional comments are welcome

    Comment on "Quantum Phase Slips and Transport in Ultrathin Superconducting Wires"

    Full text link
    In a recent Letter (Phys. Rev. Lett.78, 1552 (1997) ), Zaikin, Golubev, van Otterlo, and Zimanyi criticized the phenomenological time-dependent Ginzburg-Laudau model which I used to study the quantum phase-slippage rate for superconducting wires. They claimed that they developed a "microscopic" model, made qualitative improvement on my overestimate of the tunnelling barrier due to electromagnetic field. In this comment, I want to point out that, i), ZGVZ's result on EM barrier is expected in my paper; ii), their work is also phenomenological; iii), their renormalization scheme is fundamentally flawed; iv), they underestimated the barrier for ultrathin wires; v), their comparison with experiments is incorrect.Comment: Substantial changes made. Zaikin et al's main result was expected from my work. They underestimated tunneling barrier for ultrathin wires by one order of magnitude in the exponen

    A new topological aspect of the arbitrary dimensional topological defects

    Full text link
    We present a new generalized topological current in terms of the order parameter field ϕ⃗\vec \phi to describe the arbitrary dimensional topological defects. By virtue of the % \phi-mapping method, we show that the topological defects are generated from the zero points of the order parameter field ϕ⃗\vec \phi, and the topological charges of these topological defects are topological quantized in terms of the Hopf indices and Brouwer degrees of ϕ\phi-mapping under the condition that the Jacobian % J(\frac \phi v)\neq 0. When J(ϕv)=0J(\frac \phi v)=0, it is shown that there exist the crucial case of branch process. Based on the implicit function theorem and the Taylor expansion, we detail the bifurcation of generalized topological current and find different directions of the bifurcation. The arbitrary dimensional topological defects are found splitting or merging at the degenerate point of field function ϕ⃗\vec \phi but the total charge of the topological defects is still unchanged.Comment: 24 pages, 10 figures, Revte

    The extraction of nuclear sea quark distribution and energy loss effect in Drell-Yan experiment

    Get PDF
    The next-to-leading order and leading order analysis are performed on the differential cross section ratio from Drell-Yan process. It is found that the effect of next-to-leading order corrections can be negligible on the differential cross section ratios as a function of the quark momentum fraction in the beam proton and the target nuclei for the current Fermilab and future lower beam proton energy. The nuclear Drell-Yan reaction is an ideal tool to study the energy loss of the fast quark moving through cold nuclei. In the leading order analysis, the theoretical results with quark energy loss are in good agreement with the Fermilab E866 experimental data on the Drell-Yan differential cross section ratios as a function of the momentum fraction of the target parton. It is shown that the quark energy loss effect has significant impact on the Drell-Yan differential cross section ratios. The nuclear Drell-Yan experiment at current Fermilab and future lower energy proton beam can not provide us with more information on the nuclear sea quark distribution.Comment: 17 pages, 4 figure

    Robust Quantum State Transfer in Random Unpolarized Spin Chains

    Get PDF
    We propose and analyze a new approach for quantum state transfer between remote spin qubits. Specifically, we demonstrate that coherent quantum coupling between remote qubits can be achieved via certain classes of random, unpolarized (infinite temperature) spin chains. Our method is robust to coupling strength disorder and does not require manipulation or control over individual spins. In principle, it can be used to attain perfect state transfer over arbitrarily long range via purely Hamiltonian evolution and may be particularly applicable in a solid-state quantum information processor. As an example, we demonstrate that it can be used to attain strong coherent coupling between Nitrogen-Vacancy centers separated by micrometer distances at room temperature. Realistic imperfections and decoherence effects are analyzed.Comment: 4 pages, 2 figures. V2: Modified discussion of disorder, added references - final version as published in Phys. Rev. Let

    High-Resolution Contact Printing with Chemically Patterned Flat Stamps Fabricated by Nanoimprint Lithography

    Get PDF
    Chemically patterned flat stamps provide an effective solution to avoid mechanical stamp-stability problems currently encountered in microcontact printing. A new method is developed to fabricate chemical patterns on a flat PDMS stamp using nanoimprint lithography. Sub-100 nm gold patterns are successfully replicated by these chemically patterned flat PDMS stamps. \ud \u

    Quantum three-body system in D dimensions

    Get PDF
    The independent eigenstates of the total orbital angular momentum operators for a three-body system in an arbitrary D-dimensional space are presented by the method of group theory. The Schr\"{o}dinger equation is reduced to the generalized radial equations satisfied by the generalized radial functions with a given total orbital angular momentum denoted by a Young diagram [μ,ν,0,...,0][\mu,\nu,0,...,0] for the SO(D) group. Only three internal variables are involved in the functions and equations. The number of both the functions and the equations for the given angular momentum is finite and equal to (μ−ν+1)(\mu-\nu+1).Comment: 16 pages, no figure, RevTex, Accepted by J. Math. Phy

    Does Anti-Parallel Spin Always Contain more Information ?

    Get PDF
    We show that the Bloch vectors lying on any great circle is the largest set S(L) for which the parallel states |n,n> can always be transformed into the anti-parallel states |n,-n>. Thus more information about the Bloch vector is not extractable from |n,-n> than from |n,n> by any measuring strategy, for the Bloch vector belonging to S(L). Surprisingly, the largest set of Bloch vectors for which the corresponding qubits can be flipped is again S(L). We then show that probabilistic exact parallel to anti-parallel transformation is not possible if the corresponding anti-parallel spins span the whole Hilbert space of the two qubits. These considerations allow us to generalise a conjecture of Gisin and Popescu (Phys. Rev. Lett. 83 432 (1999)).Comment: Latex, 5 pages, minor revision
    • …
    corecore