15,454 research outputs found

    Topology of Knotted Optical Vortices

    Full text link
    Optical vortices as topological objects exist ubiquitously in nature. In this paper, by making use of the Ď•\phi-mapping topological current theory, we investigate the topology in the closed and knotted optical vortices. The topological inner structure of the optical vortices are obtained, and the linking of the knotted optical vortices is also given.Comment: 11 pages, no figures, accepted by Commun. Theor. Phys. (Beijing, P. R. China

    A QM/MM equation-of-motion coupled-cluster approach for predicting semiconductor color-center structure and emission frequencies

    Get PDF
    Valence excitation spectra are computed for all deep-center silicon-vacancy defect types in 3C, 4H, and 6H silicon carbide (SiC) and comparisons are made with literature photoluminescence measurements. Nuclear geometries surrounding the defect centers are optimized within a Gaussian basis-set framework using many-body perturbation theory or density functional theory (DFT) methods, with computational expenses minimized by a QM/MM technique called SIMOMM. Vertical excitation energies are subsequently obtained by applying excitation-energy, electron-attached, and ionized equation-of-motion coupled-cluster (EOMCC) methods, where appropriate, as well as time-dependent (TD) DFT, to small models including only a few atoms adjacent to the defect center. We consider the relative quality of various EOMCC and TD-DFT methods for (i) energy-ordering potential ground states differing incrementally in charge and multiplicity, (ii) accurately reproducing experimentally measured photoluminescence peaks, and (iii) energy-ordering defects of different types occurring within a given polytype. The extensibility of this approach to transition-metal defects is also tested by applying it to silicon-substitutional chromium defects in SiC and comparing with measurements. It is demonstrated that, when used in conjunction with SIMOMM-optimized geometries, EOMCC-based methods can provide a reliable prediction of the ground-state charge and multiplicity, while also giving a quantitative description of the photoluminescence spectra, accurate to within 0.1 eV of measurement in all cases considered.Comment: 13 pages, 4 figures, 6 tables, 5 equations, 100 reference

    Comment on "Quantum Phase Slips and Transport in Ultrathin Superconducting Wires"

    Full text link
    In a recent Letter (Phys. Rev. Lett.78, 1552 (1997) ), Zaikin, Golubev, van Otterlo, and Zimanyi criticized the phenomenological time-dependent Ginzburg-Laudau model which I used to study the quantum phase-slippage rate for superconducting wires. They claimed that they developed a "microscopic" model, made qualitative improvement on my overestimate of the tunnelling barrier due to electromagnetic field. In this comment, I want to point out that, i), ZGVZ's result on EM barrier is expected in my paper; ii), their work is also phenomenological; iii), their renormalization scheme is fundamentally flawed; iv), they underestimated the barrier for ultrathin wires; v), their comparison with experiments is incorrect.Comment: Substantial changes made. Zaikin et al's main result was expected from my work. They underestimated tunneling barrier for ultrathin wires by one order of magnitude in the exponen

    Superfluidity of fermions with repulsive on-site interaction in an anisotropic optical lattice near a Feshbach resonance

    Full text link
    We present a numerical study on ground state properties of a one-dimensional (1D) general Hubbard model (GHM) with particle-assisted tunnelling rates and repulsive on-site interaction (positive-U), which describes fermionic atoms in an anisotropic optical lattice near a wide Feshbach resonance. For our calculation, we utilize the time evolving block decimation (TEBD) algorithm, which is an extension of the density matrix renormalization group and provides a well-controlled method for 1D systems. We show that the positive-U GHM, when hole-doped from half-filling, exhibits a phase with coexistence of quasi-long-range superfluid and charge-density-wave orders. This feature is different from the property of the conventional Hubbard model with positive-U, indicating the particle-assisted tunnelling mechanism in GHM brings in qualitatively new physics.Comment: updated with published version

    Efficient engineering of multi-atom entanglement through single-photon detections

    Get PDF
    We propose an efficient scheme to engineer multi-atom entanglement by detecting cavity decay through single-photon detectors. In the special case of two atoms, this scheme is much more efficient than previous probabilistic schemes, and insensitive to randomness in the atom's position. More generally, the scheme can be used to prepare arbitrary superpositions of multi-atom Dicke states without the requirements of high-efficiency detection and separate addressing of different atoms.Comment: 5 pages, 2 figure

    Entangling many atomic ensembles through laser manipulation

    Get PDF
    We propose an experimentally feasible scheme to generate Greenberger-Horne-Zeilinger (GHZ) type of maximal entanglement between many atomic ensembles based on laser manipulation and single-photon detection. The scheme, with inherent fault tolerance to the dominant noise and efficient scaling of the efficiency with the number of ensembles, allows to maximally entangle many atomic ensemble within the reach of current technology. Such a maximum entanglement of many ensembles has wide applications in demonstration of quantum nonlocality, high-precision spectroscopy, and quantum information processing.Comment: 4 pages, 1 figur

    The extraction of nuclear sea quark distribution and energy loss effect in Drell-Yan experiment

    Get PDF
    The next-to-leading order and leading order analysis are performed on the differential cross section ratio from Drell-Yan process. It is found that the effect of next-to-leading order corrections can be negligible on the differential cross section ratios as a function of the quark momentum fraction in the beam proton and the target nuclei for the current Fermilab and future lower beam proton energy. The nuclear Drell-Yan reaction is an ideal tool to study the energy loss of the fast quark moving through cold nuclei. In the leading order analysis, the theoretical results with quark energy loss are in good agreement with the Fermilab E866 experimental data on the Drell-Yan differential cross section ratios as a function of the momentum fraction of the target parton. It is shown that the quark energy loss effect has significant impact on the Drell-Yan differential cross section ratios. The nuclear Drell-Yan experiment at current Fermilab and future lower energy proton beam can not provide us with more information on the nuclear sea quark distribution.Comment: 17 pages, 4 figure

    Fermionic zero modes in gauge and gravity backgrounds On T2T^2

    Full text link
    In this note we study fermionic zero modes in gauge and gravity backgrounds taking a two dimensional compact manifold T2T^2 as extra dimensions. The result is that there exist massless Dirac fermions which have normalizable zero modes under quite general assumptions about these backgrounds on the bulk. Several special cases of gauge background on the torus are discussed and some simple fermionic zero modes are obtained.Comment: 8 pages, no figures, v2: more references, accepted by Mod.Phys.Lett.

    Neutrino spin oscillations in gravitational fields

    Full text link
    We study neutrino spin oscillations in black hole backgrounds. In the case of a charged black hole, the maximum frequency of oscillations is a monotonically increasing function of the charge. For a rotating black hole, the maximum frequency decreases with increasing the angular momentum. In both cases, the frequency of spin oscillations decreases as the distance from the black hole grows. As a phenomenological application of our results, we study simple bipolar neutrino system which is an interesting example of collective neutrino oscillations. We show that the precession frequency of the flavor pendulum as a function of the neutrino number density will be higher for a charged/non-rotating black hole compared with a neutral/rotating black hole respectively.Comment: Replaced with the version accepted for publication in Gravitation and Cosmology, Springer. 10 pages. 4 figure
    • …
    corecore