83 research outputs found

    Personal resilience and identity capital among young people leaving care: enhancing identity formation and life chances through involvement in volunteering and social action

    Get PDF
    This study explored identity capital and personal resilience among care leavers and young people in care engaging in social activities through volunteering. Care leavers and young people in care are disadvantaged developmentally by lack of identity resources and an accelerated transition to independence. This study analysed material from semi-structured interviews to explore the Identity Capital Model and theories of individualisation, agentic identity development and resilience in explaining the identity resources of young people transitioning out of care. The analysis identified links between the exploration opportunities of volunteering with the development of agentic individualisation and enhanced identity capital. The findings indicate that developmental processes may be enhanced through supported and personalised volunteering opportunities to aid vulnerable young people transitioning out of care. Young people leaving care can make substantial gains particularly in social capital, personal resilience and identity capital. This study indicates that volunteering opportunities for this group of vulnerable young people may assist in compensating for the lack of resources often experienced by care leavers when transitioning to adulthood

    Generating a checking sequence with a minimum number of reset transitions

    Get PDF
    Given a finite state machine M, a checking sequence is an input sequence that is guaranteed to lead to a failure if the implementation under test is faulty and has no more states than M. There has been much interest in the automated generation of a short checking sequence from a finite state machine. However, such sequences can contain reset transitions whose use can adversely affect both the cost of applying the checking sequence and the effectiveness of the checking sequence. Thus, we sometimes want a checking sequence with a minimum number of reset transitions rather than a shortest checking sequence. This paper describes a new algorithm for generating a checking sequence, based on a distinguishing sequence, that minimises the number of reset transitions used.This work was supported in part by Leverhulme Trust grant number F/00275/D, Testing State Based Systems, Natural Sciences and Engineering Research Council (NSERC) of Canada grant number RGPIN 976, and Engineering and Physical Sciences Research Council grant number GR/R43150, Formal Methods and Testing (FORTEST)

    Generating test case chains for reactive systems

    Get PDF
    Testing of reactive systems is challenging because long input sequences are often needed to drive them into a state to test a desired feature. This is particularly problematic in on-target testing, where a system is tested in its real-life application environment and the amount of time required for resetting is high. This article presents an approach to discovering a test case chain—a single software execution that covers a group of test goals and minimizes overall test execution time. Our technique targets the scenario in which test goals for the requirements are given as safety properties. We give conditions for the existence and minimality of a single test case chain and minimize the number of test case chains if a single test case chain is infeasible. We report experimental results with our ChainCover tool for C code generated from Simulink models and compare it to state-of-the-art test suite generators

    Human blood RNA stabilization in samples collected and transported for a large biobank

    Get PDF
    Background: The Norwegian Mother and Child Cohort Study (MoBa) is a nation-wide population-based pregnancy cohort initiated in 1999, comprising more than 108.000 pregnancies recruited between 1999 and 2008. In this study we evaluated the feasibility of integrating RNA analyses into existing MoBa protocols. We compared two different blood RNA collection tube systems – the PAXgene™ Blood RNA system and the Tempus™ Blood RNA system - and assessed the effects of suboptimal blood volumes in collection tubes and of transportation of blood samples by standard mail. Endpoints to characterize the samples were RNA quality and yield, and the RNA transcript stability of selected genes. Findings: High-quality RNA could be extracted from blood samples stabilized with both PAXgene and Tempus tubes. The RNA yields obtained from the blood samples collected in Tempus tubes were consistently higher than from PAXgene tubes. Higher RNA yields were obtained from cord blood (3 – 4 times) compared to adult blood with both types of tubes. Transportation of samples by standard mail had moderate effects on RNA quality and RNA transcript stability; the overall RNA quality of the transported samples was high. Some unexplained changes in gene expression were noted, which seemed to correlate with suboptimal blood volumes collected in the tubes. Temperature variations during transportation may also be of some importance. Conclusions: Our results strongly suggest that special collection tubes are necessary for RNA stabilization and they should be used for establishing new biobanks. We also show that the 50,000 samples collected in the MoBa biobank provide RNA of high quality and in sufficient amounts to allow gene expression analyses for studying the association of disease with altered patterns of gene expression

    Long-term storage of blood RNA collected in RNA stabilizing Tempus tubes in a large biobank – evaluation of RNA quality and stability

    Get PDF
    Background: Establishing methods for secure long term storage of RNA is critical to realizing the promise of biobanks in biomedical research. Here, we describe the results of yearly analyses of the same set of umbilical cord and adult whole blood RNA collected in Tempus Blood RNA tubes and stored at -80°C, over a period of up to six years. We systematically investigated the effects of long-term storage of samples (75 Tempus tubes form three adult donors and 30 Tempus tubes from three cord blood donors) on the RNA quality and transcript stability of six selected genes (CDKN1A, FOS, IL1B, IL8, MYC and TP53). This is the first systematic study of both cord and adult blood samples stored for many years. Findings: The RNA purity and integrity, expressed as RIN-values, were stable up to six years of storage, and there were no storage-related deleterious effects on RNA purity. There were limited intra- and inter-individual variations in RNA yields; however, no consistent trend of decreasing RNA yield was observed with the duration of storage. Some long-term storage effects were found on the relative transcript levels of the six genes when compared to the year 0 samples. However, these changes were within ± 2–fold for both types of blood samples, except for two genes. Our results show that storage of these samples for up to six years did not have significant effects on the RNA quality and transcript stability of the six genes. Conclusions: Blood RNA is stable in Tempus tubes stored at -80°C over a period of six years. Intact and good-quality RNA suitable for transcript profiling analyses in epidemiological studies was obtained from blood samples stored in Tempus tubes. This suggests that blood samples collected in large biobanks–such as the Mother and Child (MoBa) Cohort at Norwegian Institute of Public Health (NIPH) and frozen in suitable collection tubes for total RNA stabilization, can be used for quantitative studies after at least six years of storage

    DNA Dosimetry Assessment for Sunscreen Genotoxic Photoprotection

    Get PDF
    Background: Due to the increase of solar ultraviolet radiation (UV) incidence over the last few decades, the use of sunscreen has been widely adopted for skin protection. However, considering the high efficiency of sunlight-induced DNA lesions, it is critical to improve upon the current approaches that are used to evaluate protection factors. An alternative approach to evaluate the photoprotection provided by sunscreens against daily UV radiation-induced DNA damage is provided by the systematic use of a DNA dosimeter. Methodology/Principal Findings: The Sun Protection Factor for DNA (DNA-SPF) is calculated by using specific DNA repair enzymes, and it is defined as the capacity for inhibiting the generation of cyclobutane pyrimidine dimers (CPD) and oxidised DNA bases compared with unprotected control samples. Five different commercial brands of sunscreen were initially evaluated, and further studies extended the analysis to include 17 other products representing various formulations and Sun Protection Factors (SPF). Overall, all of the commercial brands of SPF 30 sunscreens provided sufficient protection against simulated sunlight genotoxicity. In addition, this DNA biosensor was useful for rapidly screening the biological protection properties of the various sunscreen formulations. Conclusions/Significance: The application of the DNA dosimeter is demonstrated as an alternative, complementary, and reliable method for the quantification of sunscreen photoprotection at the level of DNA damage.Natura Inovacao e Tecnologia de Produtos LTDA (Sao Paulo, Brazil)Natura Inovacao e Tecnologia de Produtos LTDA (Sao Paulo, Brazil)FAPESP (Sao Paulo, Brazil)FAPESP (Sao Paulo, Brazil)CNPq (Brasilia, Brazil)CNPq (Brasilia, Brazil)Natura Inovacao e Tecnologia de Produtos LTDANatura Inovacao e Tecnologia de Produtos LTD

    Alterations in gene expression profiles correlated with cisplatin cytotoxicity in the glioma U343 cell line

    Get PDF
    Gliomas are the most common tumors in the central nervous system, the average survival time of patients with glioblastoma multiforme being about 1 year from diagnosis, in spite of harsh therapy. Aiming to study the transcriptional profiles displayed by glioma cells undergoing cisplatin treatment, gene expression analysis was performed by the cDNA microarray method. Cell survival and apoptosis induction following treatment were also evaluated. Drug concentrations of 12.5 to 300 μM caused a pronounced reduction in cell survival rates five days after treatment, whereas concentrations higher than 25 μM were effective in reducing the survival rates to ~1%. However, the maximum apoptosis frequency was 20.4% for 25 μM cisplatin in cells analyzed at 72 h, indicating that apoptosis is not the only kind of cell death induced by cisplatin. An analysis of gene expression revealed 67 significantly (FDR < 0.05) modulated genes: 29 of which down- and 38 up-regulated. These genes belong to several classes (metabolism, protein localization, cell proliferation, apoptosis, adhesion, stress response, cell cycle and DNA repair) that may represent several affected cell processes under the influence of cisplatin treatment. The expression pattern of three genes (RHOA, LIMK2 and TIMP2) was confirmed by the real time PCR method

    A2 Noradrenergic Lesions Prevent Renal Sympathoinhibition Induced by Hypernatremia in Rats

    Get PDF
    Renal vasodilation and sympathoinhibition are recognized responses induced by hypernatremia, but the central neural pathways underlying such responses are not yet entirely understood. Several findings suggest that A2 noradrenergic neurons, which are found in the nucleus of the solitary tract (NTS), play a role in the pathways that contribute to body fluid homeostasis and cardiovascular regulation. The purpose of this study was to determine the effects of selective lesions of A2 neurons on the renal vasodilation and sympathoinhibition induced by hypertonic saline (HS) infusion. Male Wistar rats (280–350 g) received an injection into the NTS of anti-dopamine-beta-hydroxylase-saporin (A2 lesion; 6.3 ng in 60 nl; n = 6) or free saporin (sham; 1.3 ng in 60 nl; n = 7). Two weeks later, the rats were anesthetized (urethane 1.2 g⋅kg−1 b.wt., i.v.) and the blood pressure, renal blood flow (RBF), renal vascular conductance (RVC) and renal sympathetic nerve activity (RSNA) were recorded. In sham rats, the HS infusion (3 M NaCl, 1.8 ml⋅kg−1 b.wt., i.v.) induced transient hypertension (peak at 10 min after HS; 9±2.7 mmHg) and increases in the RBF and RVC (141±7.9% and 140±7.9% of baseline at 60 min after HS, respectively). HS infusion also decreased the RSNA (−45±5.0% at 10 min after HS) throughout the experimental period. In the A2-lesioned rats, the HS infusion induced transient hypertension (6±1.4 mmHg at 10 min after HS), as well as increased RBF and RVC (133±5.2% and 134±6.9% of baseline at 60 min after HS, respectively). However, in these rats, the HS failed to reduce the RSNA (115±3.1% at 10 min after HS). The extent of the catecholaminergic lesions was confirmed by immunocytochemistry. These results suggest that A2 noradrenergic neurons are components of the neural pathways regulating the composition of the extracellular fluid compartment and are selectively involved in hypernatremia-induced sympathoinhibition

    Inorganic UV filters

    Get PDF
    Nowadays, concern over skin cancer has been growing more and more, especially in tropical countries where the incidence of UVA/B radiation is higher. The correct use of sunscreen is the most efficient way to prevent the development of this disease. The ingredients of sunscreen can be organic and/or inorganic sun filters. Inorganic filters present some advantages over organic filters, such as photostability, non-irritability and broad spectrum protection. Nevertheless, inorganic filters have a whitening effect in sunscreen formulations owing to the high refractive index, decreasing their esthetic appeal. Many techniques have been developed to overcome this problem and among them, the use of nanotechnology stands out. The estimated amount of nanomaterial in use must increase from 2000 tons in 2004 to a projected 58000 tons in 2020. In this context, this article aims to analyze critically both the different features of the production of inorganic filters (synthesis routes proposed in recent years) and the permeability, the safety and other characteristics of the new generation of inorganic filters

    Impact of meningococcal ACWY conjugate vaccines on pharyngeal carriage in adolescents: evidence for herd protection from the UK MenACWY programme

    Get PDF
    Objective: Serogroup W and Y invasive meningococcal disease increased globally from 2000 onwards. Responding to a rapid increase in serogroup W clonal complex 11 (W:cc11) invasive meningococcal disease, the UK replaced an adolescent booster dose of meningococcal C conjugate vaccine with quadrivalent MenACWY conjugate vaccine in 2015. By 2018, the vaccine coverage in the eligible school cohorts aged 14 to 19 years was 84%. We assessed the impact of the MenACWY vaccination programme on meningococcal carriage. Methods: An observational study of culture-defined oropharyngeal meningococcal carriage prevalence before and after the start of the MenACWY vaccination programme in UK school students, aged 15 to 19 years, using two cross-sectional studies: 2014 to 2015 “UKMenCar4” and 2018 “Be on the TEAM” (ISRCTN75858406). Results: A total of 10 625 participants preimplementation and 13 434 postimplementation were included. Carriage of genogroups C, W, and Y (combined) decreased from 2.03 to 0.71% (OR 0.34 [95% CI 0.27–0.44], p < 0.001). Carriage of genogroup B meningococci did not change (1.26% vs 1.23% [95% CI 0.77–1.22], p = 0.80) and genogroup C remained rare (n = 7/10 625 vs 17/13 488, p = 0.135). The proportion of serogroup positive isolates (i.e. those expressing capsule) decreased for genogroup W by 53.8% (95% CI –5.0 to 79.8, p = 0.016) and for genogroup Y by 30.1% (95% CI 8.9–46·3, p = 0.0025). Discussion: The UK MenACWY vaccination programme reduced carriage acquisition of genogroup and serogroup Y and W meningococci and sustained low levels of genogroup C carriage. These data support the use of quadrivalent MenACWY conjugate vaccine for indirect (herd) protection
    corecore