135 research outputs found

    A two-component pre-seeded dermal-epidermal scaffold

    Get PDF
    We have developed a bilayered dermal-epidermal scaffold for application in the treatment of full-thickness skin defects. The dermal component gels in situ and adapts to the lesion shape, delivering human dermal fibroblasts in a matrix of fibrin and cross-linked hyaluronic acid modified with a cell adhesion-promoting peptide. Fibroblasts were able to form a tridimensional matrix due to material features such as tailored mechanical properties, presence of protease-degradable elements and cell-binding ligands. The epidermal component is a robust membrane containing cross-linked hyaluronic acid and poly-l-lysine, on which keratinocytes were able to attach and to form a monolayer. Amine-aldehyde bonding at the interface between the two components allows the formation of a tightly bound composite scaffold. Both parts of the scaffold were designed to provide cell-type-specific cues to allow for cell proliferation and form a construct that mimics the skin environment.D.S.K. acknowledges funding from the Biotechnology Research Endowment from the Department of Anesthesiology at Boston Children's Hospital. I.P.M. acknowledges the Portuguese Foundation for Science and Technology for the grant BD/39396/2007 and the MIT-Portugal Program. D.G. acknowledges the Swiss National Science Foundation for a post-doctoral fellowship (PBGEP3-129111). B.P.T. acknowledges an NIR Ruth L. Kirschstein National Research Service Award (F32GM096546)

    The GALLEX Project

    Get PDF
    AbstractThe GALLEX collaboration aims at the detection of solar neutrinos in a radiochemical experiment employing 30 tons of Gallium in form of concentrated aqueous Gallium-chloride solution. The detector is primarily sensitive to the otherwise inaccessible pp-neutrinos. Details of the experiment have been repeatedly described before [1-7]. Here we report the present status of implementation in the Laboratori Nazionali del Gran Sasso (Italy). So far, 12.2 tons of Gallium are at hand. The present status of development allows to start the first full scale run at the time when 30 tons of Gallium become available. This date is expected to be January, 1990

    Self-help interventions for anxiety disorders: An overview.

    Get PDF
    Anxiety disorders are highly prevalent and are associated with a marked impairment in quality of life and a huge economic cost to society. Unfortunately, a considerable number of people who struggle with anxiety do not seek or receive adequate treatment. Self-help interventions have been proposed to constitute a relatively cheap, effective, efficient, and low-threshold intervention for anxiety disorders. This paper offers a critical discussion of their advantages and disadvantages and the evidence for their effectiveness. We conclude that guided self-help can play a major role in mental health care for patients with anxiety disorders. However, several research questions need to be answered before broad-scale dissemination is possible. The Internet will continue to play a prominent role in the further development of this field of research and clinical practice

    Measurements of differential production cross sections for a Z boson in association with jets in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Commissioning and performance of the CMS pixel tracker with cosmic ray muons

    Get PDF
    This is the Pre-print version of the Article. The official published verion of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe pixel detector of the Compact Muon Solenoid experiment consists of three barrel layers and two disks for each endcap. The detector was installed in summer 2008, commissioned with charge injections, and operated in the 3.8 T magnetic field during cosmic ray data taking. This paper reports on the first running experience and presents results on the pixel tracker performance, which are found to be in line with the design specifications of this detector. The transverse impact parameter resolution measured in a sample of high momentum muons is 18 microns.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Alignment of the CMS silicon tracker during commissioning with cosmic rays

    Get PDF
    This is the Pre-print version of the Article. The official published version of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe CMS silicon tracker, consisting of 1440 silicon pixel and 15 148 silicon strip detector modules, has been aligned using more than three million cosmic ray charged particles, with additional information from optical surveys. The positions of the modules were determined with respect to cosmic ray trajectories to an average precision of 3–4 microns RMS in the barrel and 3–14 microns RMS in the endcap in the most sensitive coordinate. The results have been validated by several studies, including laser beam cross-checks, track fit self-consistency, track residuals in overlapping module regions, and track parameter resolution, and are compared with predictions obtained from simulation. Correlated systematic effects have been investigated. The track parameter resolutions obtained with this alignment are close to the design performance.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Performance of the CMS drift-tube chamber local trigger with cosmic rays

    Get PDF
    The performance of the Local Trigger based on the drift-tube system of the CMS experiment has been studied using muons from cosmic ray events collected during the commissioning of the detector in 2008. The properties of the system are extensively tested and compared with the simulation. The effect of the random arrival time of the cosmic rays on the trigger performance is reported, and the results are compared with the design expectations for proton-proton collisions and with previous measurements obtained with muon beams

    Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC

    Get PDF
    corecore