17,307 research outputs found
On a graded q-differential algebra
Given a unital associatve graded algebra we construct the graded
q-differential algebra by means of a graded q-commutator, where q is a
primitive N-th root of unity. The N-th power (N>1) of the differential of this
graded q-differential algebra is equal to zero. We use our approach to
construct the graded q-differential algebra in the case of a reduced quantum
plane which can be endowed with a structure of a graded algebra. We consider
the differential d satisfying d to power N equals zero as an analog of an
exterior differential and study the first order differential calculus induced
by this differential.Comment: 6 pages, submitted to the Proceedings of the "International
Conference on High Energy and Mathematical Physics", Morocco, Marrakech,
April 200
N-complexes as functors, amplitude cohomology and fusion rules
We consider N-complexes as functors over an appropriate linear category in
order to show first that the Krull-Schmidt Theorem holds, then to prove that
amplitude cohomology only vanishes on injective functors providing a well
defined functor on the stable category. For left truncated N-complexes, we show
that amplitude cohomology discriminates the isomorphism class up to a
projective functor summand. Moreover amplitude cohomology of positive
N-complexes is proved to be isomorphic to an Ext functor of an indecomposable
N-complex inside the abelian functor category. Finally we show that for the
monoidal structure of N-complexes a Clebsch-Gordan formula holds, in other
words the fusion rules for N-complexes can be determined.Comment: Final versio
Examples of derivation-based differential calculi related to noncommutative gauge theories
Some derivation-based differential calculi which have been used to construct
models of noncommutative gauge theories are presented and commented. Some
comparisons between them are made.Comment: 22 pages, conference given at the "International Workshop in honour
of Michel Dubois-Violette, Differential Geometry, Noncommutative Geometry,
Homology and Fundamental Interactions". To appear in a special issue of
International Journal of Geometric Methods in Modern Physic
Noncommutative generalization of SU(n)-principal fiber bundles: a review
This is an extended version of a communication made at the international
conference ``Noncommutative Geometry and Physics'' held at Orsay in april 2007.
In this proceeding, we make a review of some noncommutative constructions
connected to the ordinary fiber bundle theory. The noncommutative algebra is
the endomorphism algebra of a SU(n)-vector bundle, and its differential
calculus is based on its Lie algebra of derivations. It is shown that this
noncommutative geometry contains some of the most important constructions
introduced and used in the theory of connections on vector bundles, in
particular, what is needed to introduce gauge models in physics, and it also
contains naturally the essential aspects of the Higgs fields and its associated
mechanics of mass generation. It permits one also to extend some previous
constructions, as for instance symmetric reduction of (here noncommutative)
connections. From a mathematical point of view, these geometrico-algebraic
considerations highlight some new point on view, in particular we introduce a
new construction of the Chern characteristic classes
Z_3-graded exterior differential calculus and gauge theories of higher order
We present a possible generalization of the exterior differential calculus,
based on the operator d such that d^3=0, but d^2\not=0. The first and second
order differentials generate an associative algebra; we shall suppose that
there are no binary relations between first order differentials, while the
ternary products will satisfy the cyclic relations based on the representation
of cyclic group Z_3 by cubic roots of unity. We shall attribute grade 1 to the
first order differentials and grade 2 to the second order differentials; under
the associative multiplication law the grades add up modulo 3. We show how the
notion of covariant derivation can be generalized with a 1-form A, and we give
the expression in local coordinates of the curvature 3-form. Finally, the
introduction of notions of a scalar product and integration of the Z_3-graded
exterior forms enables us to define variational principle and to derive the
differential equations satisfied by the curvature 3-form. The Lagrangian
obtained in this way contains the invariants of the ordinary gauge field tensor
F_{ik} and its covariant derivatives D_i F_{km}.Comment: 13 pages, no figure
BRS Cohomology of the Supertranslations in D=4
Supersymmetry transformations are a kind of square root of spacetime
translations. The corresponding Lie superalgebra always contains the
supertranslation operator . We find that the
cohomology of this operator depends on a spin-orbit coupling in an SU(2) group
and has a quite complicated structure. This spin-orbit type coupling will turn
out to be basic in the cohomology of supersymmetric field theories in general.Comment: 14 pages, CTP-TAMU-13/9
From Koszul duality to Poincar\'e duality
We discuss the notion of Poincar\'e duality for graded algebras and its
connections with the Koszul duality for quadratic Koszul algebras. The
relevance of the Poincar\'e duality is pointed out for the existence of twisted
potentials associated to Koszul algebras as well as for the extraction of a
good generalization of Lie algebras among the quadratic-linear algebras.Comment: Dedicated to Raymond Stora. 27 page
COMMENTS ABOUT HIGGS FIELDS, NONCOMMUTATIVE GEOMETRY AND THE STANDARD MODEL
We make a short review of the formalism that describes Higgs and Yang Mills
fields as two particular cases of an appropriate generalization of the notion
of connection. We also comment about the several variants of this formalism,
their interest, the relations with noncommutative geometry, the existence (or
lack of existence) of phenomenological predictions, the relation with Lie
super-algebras etc.Comment: pp 20, LaTeX file, no figures, also available via anonymous ftp at
ftp://cpt.univ-mrs.fr/ or via gopher gopher://cpt.univ-mrs.fr
AGN Feedback Compared: Jets versus Radiation
Feedback by Active Galactic Nuclei is often divided into quasar and radio
mode, powered by radiation or radio jets, respectively. Both are fundamental in
galaxy evolution, especially in late-type galaxies, as shown by cosmological
simulations and observations of jet-ISM interactions in these systems. We
compare AGN feedback by radiation and by collimated jets through a suite of
simulations, in which a central AGN interacts with a clumpy, fractal galactic
disc. We test AGN of and erg/s, considering jets
perpendicular or parallel to the disc. Mechanical jets drive the more powerful
outflows, exhibiting stronger mass and momentum coupling with the dense gas,
while radiation heats and rarifies the gas more. Radiation and perpendicular
jets evolve to be quite similar in outflow properties and effect on the cold
ISM, while inclined jets interact more efficiently with all the disc gas,
removing the densest in Myr, and thereby reducing the amount of
cold gas available for star formation. All simulations show small-scale inflows
of M/yr, which can easily reach down to the Bondi radius of
the central supermassive black hole (especially for radiation and perpendicular
jets), implying that AGN modulate their own duty cycle in a feedback/feeding
cycle.Comment: 21 pages, 15 figures, 2 table
- …