43 research outputs found

    A Family of Scalable Polynomial Multiplier Architectures for Ring-LWE Based Cryptosystems

    Get PDF
    Many lattice based cryptosystems are based on the Ring learning with errors (Ring-LWE) problem. The most critical and computationally intensive operation of these Ring-LWE based cryptosystems is polynomial multiplication over rings. In this paper, we exploit the number theoretic transform (NTT) to build a family of scalable polynomial multiplier architectures, which provide designers with a trade-off choice of speed vs. area. Our polynomial multipliers are capable to calculate the product of two nn-degree polynomials in about (1.5nlg⁥n+1.5n)/b(1.5n\lg n + 1.5n)/b clock cycles, where bb is the number of the butterfly operators. In addition, we exploit the cancellation lemma to reduce the required ROM storage. The experimental results on a Spartan-6 FPGA show that the proposed polynomial multiplier architectures achieve a speedup of 3 times on average and consume less Block RAMs and slices when compared with the compact design. Compared with the state of the art of high-speed design, the proposed hardware architectures save up to 46.64\% clock cycles and improve the utilization rate of the main data processing units by 42.27\%. Meanwhile, our designs can save up to 29.41\% block RAMs

    Hepatobiliary surgery based on intelligent image segmentation technology

    No full text
    Liver disease is an important disease that seriously threatens human health. It accounts for the highest proportion in various malignant tumors, and its incidence rate and mortality are on the rise, seriously affecting human health. Modern imaging has developed rapidly, but the application of image segmentation in liver tumor surgery is still rare. The application of image processing technology represented by artificial intelligence (AI) in surgery can greatly improve the efficiency of surgery, reduce surgical complications, and reduce the cost of surgery. Hepatocellular carcinoma is the most common malignant tumor in the world, and its mortality is second only to lung cancer. The resection rate of liver cancer surgery is high, and it is a multidisciplinary surgery, so it is necessary to explore the possibility of effective switching between different disciplines. Resection of hepatobiliary and pancreatic tumors is one of the most challenging and lethal surgical procedures. The operation requires a high level of doctors’ experience and understanding of anatomical structures. The surgical segmentation is slow and there may be obvious complications. Therefore, the surgical system needs to make full use of the relevant functions of AI technology and computer vision analysis software, and combine the processing strategy based on image processing algorithm and computer vision analysis model. Intelligent optimization algorithm, also known as modern heuristic algorithm, is an algorithm with global optimization performance, strong universality, and suitable for parallel processing. This algorithm generally has a strict theoretical basis, rather than relying solely on expert experience. In theory, the optimal solution or approximate optimal solution can be found in a certain time. This work studies the hepatobiliary surgery through intelligent image segmentation technology, and analyzes them through intelligent optimization algorithm. The research results showed that when other conditions were the same, there were three patients who had adverse reactions in hepatobiliary surgery through intelligent image segmentation technology, accounting for 10%. The number of patients with adverse reactions in hepatobiliary surgery by conventional methods was nine, accounting for 30%, which was significantly higher than the former, indicating a positive relationship between intelligent image segmentation technology and hepatobiliary surgery

    A proteomic classifier panel for early screening of colorectal cancer: a case control study

    No full text
    Abstract Background Diagnosis of colorectal cancer (CRC) during early stages can greatly improve patient outcome. Although technical advances in the field of genomics and proteomics have identified a number of candidate biomarkers for non-invasive screening and diagnosis, developing more sensitive and specific methods with improved cost-effectiveness and patient compliance has tremendous potential to help combat the disease. Methods We enrolled three cohorts of 479 subjects, including 226 CRC cases, 197 healthy controls, and 56 advanced precancerous lesions (APC). In the discovery cohort, we used quantitative mass spectrometry to measure the expression profile of plasma proteins and applied machine-learning to select candidate proteins. We then developed a targeted mass spectrometry assay to measure plasma concentrations of seven proteins and a logistic regression classifier to distinguish CRC from healthy subjects. The classifier was further validated using two independent cohorts. Results The seven-protein panel consisted of leucine rich alpha-2-glycoprotein 1 (LRG1), complement C9 (C9), insulin-like growth factor binding protein 2 (IGFBP2), carnosine dipeptidase 1 (CNDP1), inter-alpha-trypsin inhibitor heavy chain 3 (ITIH3), serpin family A member 1 (SERPINA1), and alpha-1-acid glycoprotein 1 (ORM1). The panel classified CRC and healthy subjects with high accuracy, since the area under curve (AUC) of the training and testing cohort reached 0.954 and 0.958. The AUC of the two independent validation cohorts was 0.905 and 0.909. In one validation cohort, the panel had an overall sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of 89.9%, 81.8%, 89.2%, and 82.9%, respectively. In another blinded validation cohort, the panel classified CRC from healthy subjects with a sensitivity of 81.5%, specificity of 97.9%, and overall accuracy of 92.0%. Finally, the panel was able to detect APC with a sensitivity of 49%. Conclusions This seven-protein classifier is a clear improvement compared to previously published blood-based protein biomarkers for detecting early-stage CRC, and is of translational potential to develop into a clinically useful assay
    corecore