36 research outputs found

    The adult heart requires baseline expression of the transcription factor Hand2 to withstand RV pressure overload

    Get PDF
    AIMS: Research on the pathophysiology of right ventricular (RV) failure has, in spite of the associated high mortality and morbidity, lagged behind compared to the left ventricle (LV).Previous work from our lab revealed that the embryonic basic helix-loop-helix transcription factor heart and neural crest derivatives expressed-2 (Hand2) is re-expressed in the adult heart and activates a 'fetal gene program' contributing to pathological cardiac remodeling under conditions of LV pressure overload. As such, ablation of cardiac expression of Hand2 conferred protection to cardiac stress and abrogated the maladaptive effects that were observed upon increased expression levels. In this study, we aimed to understand the contribution of Hand2 to RV remodeling in response to pressure overload induced by pulmonary artery banding (PAB). METHODS AND RESULTS: In the present study, Hand2F/F and MCM- Hand2F/F mice were treated with tamoxifen (control and knockout, respectively) and subjected to six weeks of RV pressure overload induced by PAB. Echocardiographic- and MRI-derived hemodynamic parameters as well as molecular remodeling were assessed for all experimental groups and compared to sham-operated controls. Six weeks after PAB, levels of Hand2 expression increased in the control banded animals but, as expected, remained absent in the knockout hearts. Despite the dramatic differences in Hand2 expression, pressure overload resulted in impaired cardiac function independently of the genotype. In fact, Hand2 depletion seems to sensitize the RV to pressure overload as these mice develop more hypertrophy and more severe cardiac dysfunction. Higher expression levels of HAND2 were also observed in RV samples of human hearts from patients with pulmonary hypertension. In turn, the LV of RV-pressure overloaded hearts was also dramatically affected as reflected by changes in shape, decreased LV mass and impaired cardiac function. RNA sequencing revealed a distinct set of genes that are dysregulated in the pressure-overloaded RV, compared to the previously described pressure-overloaded LV. CONCLUSIONS: Cardiac-specific depletion of Hand2 is associated with severe cardiac dysfunction in conditions of RV pressure overload. While inhibiting Hand2 expression can prevent cardiac dysfunction in conditions of LV pressure overload, the same does not hold true for conditions of RV pressure overload. This study highlights the need to better understand the molecular mechanisms driving pathological remodeling of the RV in contrast to the LV, in order to better diagnose and treat patients with RV or LV failure. TRANSLATIONAL PERSPECTIVE: RV failure associated with pulmonary hypertension reduces long-term survival rate to 55% within 3 years, suggesting that 3 years after diagnosis almost half of the patients will die. To revert these numbers an adequate RV-specific and, therefore, more efficient treatment is needed. Our work suggests that current therapies and potential mechanisms underlying LV failure may not be suitable for RV failure. While Hand2 deletion is favorable in LV response to stress, it is particularly detrimental in the RV under similar conditions, and thus, highlighting potential severe consequences of not differentiating therapeutic targets or treatment for RV or LV failure

    Effects of erythropoietin on advanced pulmonary vascular remodelling

    No full text
    Erythropoietin (EPO) mobilises endothelial progenitor cells and promotes neovascularisation in heart failure. The present authors studied the effects of EPO on pulmonary vascular and cardiac remodelling in a model for flow-associated pulmonary arterial hypertension (PAH). PAH was induced in adult male Wistar rats by the injection of monocrotaline combined with an abdominal aortocaval shunt 1 week later (PAH or experimental group). Immediately afterwards, rats were randomised into those who received treatment with EPO (PAH+EPO group) and controls. Pulmonary and systemic haemodynamics, and right ventricular and pulmonary vascular remodelling were evaluated 3 weeks later. Vascular occlusion of the intra-acinar pulmonary vessels (13.4 +/- 0.7 versus 16.7 +/- 1.3% in PAH+EPO and PAH, respectively) and medial wall thickness of the pre-acinar arteries (wall-to-lumen ratio 0.13 +/- 0.01 versus 0.17 +/- 0.01 in PAH+EPO and PAH, respectively) decreased after treatment with EPO. Moreover, right ventricular capillary density was increased by therapy (2,322 +/- 61 versus 2,100 +/- 63 capillaries mm(-2) in PAH+EPO and PAH, respectively). Increased mean pulmonary arterial pressure and decreased right ventricular contractility in the model were not altered by EPO treatment. In this rat model of flow-associated pulmonary arterial hypertension, erythropoietin treatment beneficially affected pulmonary vascular and cardiac remodelling. These histopathological effects were not accompanied by significantly improved haemodynamics

    Favorable outcome after physiologic dose of sodium-D,L-3-hydroxybutyrate in severe MADD

    No full text
    Multiple acyl coenzyme A dehydrogenase deficiency (MADD) is a severe inborn error of metabolism. Experiences with sodium-D,L-3-hydroxybutyrate (3-HB) treatment are limited although positive; however, the general view on outcome of severely affected patients with MADD is relatively pessimistic. Here we present an infant with MADD in whom the previously reported dose of 3-HB did not prevent the acute, severe, metabolic decompensation or progressive cardiomyopathy in the subsequent months. Only after a physiologic dose of 2600 mg/kg of 3-HB per day were ketone bodies detected in blood associated with improvement of the clinical course, N-terminal prohormone of brain natriuretic peptide and echocardiographic parameters. Long-term studies are warranted on 3-HB treatment in patients with MADD

    Death in CHARGE syndrome after the neonatal period

    No full text
    CHARGE syndrome is a multiple congenital anomaly syndrome that can be life-threatening in the neonatal period. Complex heart defects, bilateral choanal atresia, esophageal atresia, severe T-cell deficiency, and brain anomalies can cause neonatal death. As little is known about the causes of death in childhood and adolescence, we studied post-neonatal death in patients with CHARGE syndrome. We collected medical data on three deceased children from a follow-up cohort of 48 CHARGE patients and retrospectively on an additional four deceased patients (age at death 11 months to 22 years). We analyzed the factors that had contributed to their death. In five patients respiratory aspiration had most likely contributed to premature death, one died of post-operative complications, and another choked during eating. From our findings and a literature review, we suggest that swallowing problems, gastro-esophageal reflux disease, respiratory aspiration and post-operative airway events are important contributors to post-neonatal death in CHARGE syndrome. Cranial nerve dysfunction is proposed as the underlying pathogenic mechanism. We recommend every CHARGE patient with feeding difficulties to be assessed by a multidisciplinary team to evaluate cranial nerve function and swallowing. Timely treatment of swallowing problems and gastro-esophageal reflux disease is important. Surgical procedures on these patients should be combined whenever possible because of their increased risk of post-operative complications and intubation problems. Finally, we recommend performing autopsy in deceased CHARGE patients in order to gain more insight into causes of death

    Growth patterns and cerebroplacental hemodynamics in fetuses with congenital heart disease

    Get PDF
    Objectives: Congenital heart disease (CHD) has been associated with reduced fetal head circumference (HC), although the underlying pathophysiology remains undetermined. We aimed to define trends in fetal growth and cerebroplacental Doppler flow, and to investigate their relationship, in fetuses with CHD. Methods: This was a retrospective study in two fetal medicine units in The Netherlands. We included all fetuses with CHD in whom Doppler flow patterns (middle cerebral artery (MCA) pulsatility index (PI), umbilical artery (UA) PI and cerebroplacental ratio (CPR)) and biometry (HC and abdominal circumference (AC)) had been measured serially after 19 weeks' gestation between January 2010 and November 2016. Fetuses were categorized into three groups based on the expected cerebral arterial oxygen saturation of their particular type of CHD: normal; mild to moderately reduced; severely reduced. Trends over time in Z-scores were analyzed using a linear mixed-effects model. Results: A total of 181 fetuses fulfilled the inclusion criteria. Expected cerebral arterial oxygen saturation in CHD was classified as normal in 44 cases, mild to moderately reduced in 84 and severely reduced in 53. In the cohort overall, average trends over time were significant for both HC and AC Z-scores. HC Z-scores showed a tendency to decrease until 23 weeks, then to increase until 33 weeks, followed by another decrease in the late third trimester. AC Z-scores increased progressively with advancing gestation. MCA-PI and UA-PI Z-scores showed significant trends throughout pregnancy, but CPR Z-scores did not. There were no associations between expected cerebral arterial oxygen saturation and fetal growth. Average trends in MCA-PI Z-scores were significantly different between the three subgroups, whereas those in UA-PI Z-scores and in CPR Z-scores were similar between the subgroups. There was no significant association between MCA-PI and HC Z-scores. Conclusions: Fetal biometry and Doppler flow patterns are within normal range in fetuses with CHD, but show trends over time. Head growth in fetuses with CHD is not associated with cerebral blood flow pattern or placental function and HC is not influenced by the cerebral arterial oxygen saturation. © 2018 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of the International Society of Ultrasound in Obstetrics and Gynecology

    Neurophysiological evaluation in children with Friedreich's ataxia

    No full text
    INTRODUCTION: In children with Friedreich's ataxia (FRDA children), clinical ataxia outcomes are hardly substantiated by underlying neurophysiological parameters. In young FRDA children, some reports (based upon International Cooperative Ataxia Rating Scale scores (ICARS)) mention transient neurological improvement upon idebenone treatment. However, these outcomes are obtained with adult instead of pediatric reference values. It is unknown whether age-related neurophysiological parameters can really substantiate neurologic improvement. AIM: In young FRDA children, we aimed to determine longitudinal neurophysiological parameters during idebenone treatment. METHODS: During a two-year study period, 6 genetically proven FRDA children with cardiomyopathy (6-18years) were longitudinally assessed for neurophysiological parameters [sensory evoked potentials (SEPs), F response, peripheral nerve conduction and dynamometry] in association with age-matched ICARS-scores. RESULTS: In all FRDA children, SEPs remained absent during the two-year study period. Peroneal nerve conduction velocity declined (from -1SD to -2SD; p<.05), whereas F responses remained essentially unaltered. Total muscle force and leg muscle force decreased (from -2 to -3SD and -2.5 to -3.5SD; both p<.05) and age-related ICARS-scores deteriorated (median increase +41%; p<.05). CONCLUSION: In FRDA children, age-related neurophysiological and ataxia parameters deteriorate during idebenone treatment. Although we cannot exclude some (subjective) disease stabilization, age-related neurophysiological parameters do not substantiate neurologic improvement
    corecore