43,498 research outputs found

    Distributed Convergence Verification for Gaussian Belief Propagation

    Full text link
    Gaussian belief propagation (BP) is a computationally efficient method to approximate the marginal distribution and has been widely used for inference with high dimensional data as well as distributed estimation in large-scale networks. However, the convergence of Gaussian BP is still an open issue. Though sufficient convergence conditions have been studied in the literature, verifying these conditions requires gathering all the information over the whole network, which defeats the main advantage of distributed computing by using Gaussian BP. In this paper, we propose a novel sufficient convergence condition for Gaussian BP that applies to both the pairwise linear Gaussian model and to Gaussian Markov random fields. We show analytically that this sufficient convergence condition can be easily verified in a distributed way that satisfies the network topology constraint.Comment: accepted by Asilomar Conference on Signals, Systems, and Computers, 2017, Asilomar, Pacific Grove, CA. arXiv admin note: text overlap with arXiv:1706.0407

    Entanglement of separate nitrogen-vacancy centers coupled to a whispering-gallery mode cavity

    Full text link
    We present a quantum electrodynamical model involving nitrogen-vacancy centers coupled to a whispering-gallery mode cavity. Two schemes are considered to create W state and Bell state, respectively. One of the schemes makes use of the Raman transition with the cavity field virtually excited; The other enables the Bell state preparation and quantum information transfer by virtue of dark state evolution and adiabatic passage, which is tolerant to ambient noise and experimental parameter fluctuations. We justify our schemes by considering the experimental feasibility and challenge using currently available technology.Comment: 8 pages and 5 figure

    The Odyssey Approach for Optimizing Federated SPARQL Queries

    Full text link
    Answering queries over a federation of SPARQL endpoints requires combining data from more than one data source. Optimizing queries in such scenarios is particularly challenging not only because of (i) the large variety of possible query execution plans that correctly answer the query but also because (ii) there is only limited access to statistics about schema and instance data of remote sources. To overcome these challenges, most federated query engines rely on heuristics to reduce the space of possible query execution plans or on dynamic programming strategies to produce optimal plans. Nevertheless, these plans may still exhibit a high number of intermediate results or high execution times because of heuristics and inaccurate cost estimations. In this paper, we present Odyssey, an approach that uses statistics that allow for a more accurate cost estimation for federated queries and therefore enables Odyssey to produce better query execution plans. Our experimental results show that Odyssey produces query execution plans that are better in terms of data transfer and execution time than state-of-the-art optimizers. Our experiments using the FedBench benchmark show execution time gains of at least 25 times on average.Comment: 16 pages, 10 figure

    Convergence analysis of the information matrix in Gaussian belief propagation

    Get PDF
    Gaussian belief propagation (BP) has been widely used for distributed estimation in large-scale networks such as the smart grid, communication networks, and social networks, where local measurements/observations are scattered over a wide geographical area. However, the convergence of Gaus- sian BP is still an open issue. In this paper, we consider the convergence of Gaussian BP, focusing in particular on the convergence of the information matrix. We show analytically that the exchanged message information matrix converges for arbitrary positive semidefinite initial value, and its dis- tance to the unique positive definite limit matrix decreases exponentially fast.Comment: arXiv admin note: substantial text overlap with arXiv:1611.0201

    Nonclassical paths in the recurrence spectrum of diamagnetic atoms

    Get PDF
    Using time-independent scattering matrices, we study how the effects of nonclassical paths on the recurrence spectra of diamagnetic atoms can be extracted from purely quantal calculations. This study reveals an intimate relationship between two types of nonclassical paths: exotic ghost orbits and diffractive orbits. This relationship proves to be a previously unrecognized reason for the success of semiclassical theories, like closed-orbit theory, and permits a comprehensive reformulation of the semiclassical theory that elucidates its convergence properties.Comment: 5 pages, 4 figure
    corecore