6,555 research outputs found
Testing mechanisms of compensatory fitness of dioecy in a cosexual world
Questions: All else being equal, populations of dioecious species with a 50:50 sex ratio have only half the effective reproductive population size of bisexual species of equal abundance. Consequently, there is a need to explain how dioecious and bisexual species coexist. Increased mean individual seed mass, fecundity, and population density have all been proposed as attributes of unisexual individuals or populations that may contribute to the persistence or resilience of dioecious species. To date, no studies have compared sympatric dioecious and cosexual species with respect to all three components of fitness. In this study, we sought evidence for these compensatory advantages (higher seed mass, greater seed production per unit basal area, and higher population density) in dioecious species. Location: Five 20–25 ha forest dynamic plots spanning a latitudinal gradient in China, including two temperate, two subtropical, and one tropical forest. Methods: We used a phylogenetically corrected generalized linear modelling approach to assess the phylogenetic dependence and joint evolution of sexual system, seed mass and production, and ecological abundances among 48–333 species and 32,568–136,237 individuals per forest. Results: Across all five forests, we detected no consistent advantage for dioecious relative to sympatric cosexual species with respect to mean individual seed mass, seed production or the density of stems in any size class. Conclusions: Our study suggests that seed traits may provide compensatory mechanisms in some forests, but most often the coexistence of sexual systems cannot be explained by advantages of dioecy related to seed quality and demographic parameters. Future investigations of the factors that promote coexistence may increase our understanding by expanding the search to include attributes such as lifespan and tolerance or resistance to herbivores
Quantifying the Detrimental Impacts of Land-Use and Management Change on European Forest Bird Populations
The ecological impacts of changing forest management practices in Europe are poorly understood despite European forests being highly managed. Furthermore, the effects of potential drivers of forest biodiversity decline are rarely considered in concert, thus limiting effective conservation or sustainable forest management. We present a trait-based framework that we use to assess the detrimental impact of multiple land-use and management changes in forests on bird populations across Europe. Major changes to forest habitats occurring in recent decades, and their impact on resource availability for birds were identified. Risk associated with these changes for 52 species of forest birds, defined as the proportion of each species' key resources detrimentally affected through changes in abundance and/or availability, was quantified and compared to their pan-European population growth rates between 1980 and 2009. Relationships between risk and population growth were found to be significantly negative, indicating that resource loss in European forests is an important driver of decline for both resident and migrant birds. Our results demonstrate that coarse quantification of resource use and ecological change can be valuable in understanding causes of biodiversity decline, and thus in informing conservation strategy and policy. Such an approach has good potential to be extended for predictive use in assessing the impact of possible future changes to forest management and to develop more precise indicators of forest health
The Paleoproterozoic Chibaisong Mafic-Ultramafic Intrusion and Cu-Ni Deposit, North China Craton: SHRIMP Zircon U-Pband Re-Os Geochronology and Geodynamic Implications
published_or_final_versio
Baryonic Effects on Lagrangian Clustering and Angular Momentum Reconstruction
Recent studies illustrate the correlation between the angular momenta of cosmic structures and their Lagrangian properties. However, only baryons are observable and it is unclear whether they reliably trace the cosmic angular momenta. We study the Lagrangian mass distribution, spin correlation, and predictability of dark matter, gas, and stellar components of galaxy-halo systems using IllustrisTNG, and show that the primordial segregations between components are typically small. Their protoshapes are also similar in terms of the statistics of moment of inertia tensors. Under the common gravitational potential they are expected to exert the same tidal torque and the strong spin correlations are not destroyed by the nonlinear evolution and complicated baryonic effects, as confirmed by the high-resolution hydrodynamic simulations. We further show that their late-time angular momenta traced by total gas, stars, or the central galaxies, can be reliably reconstructed by the initial perturbations. These results suggest that baryonic angular momenta can potentially be used in reconstructing the parameters and models related to the initial perturbations.Peer reviewe
Optimization of a total acid hydrolysis based protocol for the quantification of carbohydrate in macroalgae
Accurate quantification of carbohydrate content of biomass is crucial for many bio-refining applications. The standardised NREL two stage complete acid hydrolysis protocol was evaluated for its suitability towards seaweeds, as the protocol was originally developed for lignocellulosic feedstocks. The compositional differences between the major polysaccharides in seaweeds and terrestrial plants, and seaweed’s less recalcitrant nature, could suggest the NREL based protocol may be too extreme. Underestimations of carbohydrate content through the degradation of liberated sugars into furan compounds may yield erroneous data.
An optimised analysis method for carbohydrate quantification in the brown seaweed L. digitata was thus developed and evaluated. Results from this study revealed stage 1 of the assay was crucial for optimisation however stage 2 proved to be less crucial. The newly optimised protocol for L. digitata yielded 210 mg of carbohydrate per g of biomass compared to a yield of only 166 mg/g from the original NREL protocol. Use of the new protocol on two other species of seaweed also gave consistent results; higher carbohydrate and significantly lower sugar degradation products generation than the original protocol. This study demonstrated the importance of specific individual optimisations of the protocol for accurate sugar quantification, particularly for different species of seawee
Odour-mediated orientation of beetles is influenced by age, sex and morph
The behaviour of insects is dictated by a combination of factors and may vary considerably between individuals, but small insects are often considered en masse and thus these differences can be overlooked. For example, the cowpea bruchid Callosobruchus maculatus F. exists naturally in two adult forms: the active (flight) form for dispersal, and the inactive (flightless), more fecund but shorter-lived form. Given that these morphs show dissimilar biology, it is possible that they differ in odour-mediated orientation and yet studies of this species frequently neglect to distinguish morph type, or are carried out only on the inactive morph. Along with sex and age of individual, adult morph could be an important variable determining the biology of this and similar species, informing studies on evolution, ecology and pest management. We used an olfactometer with motion-tracking to investigate whether the olfactory behaviour and orientation of C. maculatus towards infested and uninfested cowpeas and a plant-derived repellent compound, methyl salicylate, differed between morphs or sexes. We found significant differences between the behaviour of male and female beetles and beetles of different ages, as well as interactive effects of sex, morph and age, in response to both host and repellent odours. This study demonstrates that behavioural experiments on insects should control for sex and age, while also considering differences between adult morphs where present in insect species. This finding has broad implications for fundamental entomological research, particularly when exploring the relationships between physiology, behaviour and evolutionary biology, and the application of crop protection strategies
Conversion of the LIMA1 tumour suppressor into an oncogenic LMO-like protein by API2-MALT1 in MALT lymphoma.
MALT1 is the only known paracaspase and is a critical mediator of B- and T-cell receptor signalling. The function of the MALT1 gene is subverted by oncogenic chimeric fusions arising from the recurrent t(11;18)(q21;q21) aberration, which is the most frequent translocation in mucosa-associated lymphoid tissue (MALT) lymphoma. API2-MALT1-positive MALT lymphomas manifest antibiotic resistance and aggressive clinical behaviour with poor clinical outcome. However, the mechanisms underlying API2-MALT1-induced MALT lymphomagenesis are not fully understood. Here we show that API2-MALT1 induces paracaspase-mediated cleavage of the tumour suppressor protein LIMA1. LIMA1 binding by API2-MALT1 is API2 dependent and proteolytic cleavage is dependent on MALT1 paracaspase activity. Intriguingly, API2-MALT1-mediated proteolysis generates a LIM domain-only (LMO)-containing fragment with oncogenic properties in vitro and in vivo. Importantly, primary MALT lymphomas harbouring the API2-MALT1 fusion uniquely demonstrate LIMA1 cleavage fragments. Our studies reveal a novel paracaspase-mediated oncogenic gain-of-function mechanism in the pathogenesis of MALT lymphoma.This work was
supported in part by NIH grants R01 DE119249 and R01 CA136905 (K.S.J.E-J.), R01
CA140806 (M.S.L.) and the Department of Pathology at the University of Michigan.This is the accepted manuscript. The final version is available from Nature at http://www.nature.com/ncomms/2015/150108/ncomms6908/full/ncomms6908.html
Comparative chromosome painting discloses homologous Segments in distantly related mammals
Comparative chromosome painting, termed ZOO-FISH, using DNA libraries from flow
sorted human chromosomes 1,16,17 and X, and mouse chromosome 11 discloses the
presence of syntenic groups in distantly related mammalian Orders ranging from
primates (Homo sapiens), rodents (Mus musculus), even-toed ungulates (Muntiacus
muntjak vaginalis and Muntiacus reevesi) and whales (Balaenoptera physalus). These
mammalian Orders have evolved separately for 55-80 million years (Myr). We conclude
that ZOO-FISH can be used to generate comparative chromosome maps of a large
number of mammalian species
Physiological and Behavioral Plasticity of the Sea Cucumber Holothuria forskali (Echinodermata, Holothuroidea) to Acidified Seawater
Research into the effects of reduced pH caused by rising CO2 on echinoderms has been strongly biased toward those groups which rely heavily on calcification, such as sea urchins. There is very limited information available for groups that are less reliant on calcification, such as sea cucumbers. Moreover, plasticity in physiology and behavior in holothurians, which is considered to be critical to cope with ocean acidification, remains even less understood. Here, we examined the effects of a 22-week exposure to three pH levels (pH 7.97, 7.88, and 7.79) on the responses of adult Holothuria forskali. This is an abundant and ecologically important sea cucumber in shallow waters of the northeast Atlantic and Mediterranean. The holothurians did not exhibit serious acidosis after a 4-week gradually decreased pH exposure, possibly due to the slow acclimation period. After an additional 18 weeks of exposure, coelomic acid–base parameters did not differ significantly among the pH treatments, whereas they were higher than in week 4. Gonad development, defense behavior, and the structure and Ca2+ and Mg2+ concentrations of calcareous endoskeleton deposited in the body wall were all unaffected by decreased levels of seawater pH. No statistical differences were found after 22 weeks, and adult H. forskali showed strong physiological and behavioral plasticity to the effects of lowered seawater pH. While the interpretation of our results is restricted due to small sample sizes, this first long-term study of the effects of seawater acidification on sea cucumbers revealed resilience within the wide natural range of pCO2 found in NE Atlantic coastal waters
- …