27,254 research outputs found
Acoustic Scene Classification by Implicitly Identifying Distinct Sound Events
In this paper, we propose a new strategy for acoustic scene classification
(ASC) , namely recognizing acoustic scenes through identifying distinct sound
events. This differs from existing strategies, which focus on characterizing
global acoustical distributions of audio or the temporal evolution of
short-term audio features, without analysis down to the level of sound events.
To identify distinct sound events for each scene, we formulate ASC in a
multi-instance learning (MIL) framework, where each audio recording is mapped
into a bag-of-instances representation. Here, instances can be seen as
high-level representations for sound events inside a scene. We also propose a
MIL neural networks model, which implicitly identifies distinct instances
(i.e., sound events). Furthermore, we propose two specially designed modules
that model the multi-temporal scale and multi-modal natures of the sound events
respectively. The experiments were conducted on the official development set of
the DCASE2018 Task1 Subtask B, and our best-performing model improves over the
official baseline by 9.4% (68.3% vs 58.9%) in terms of classification accuracy.
This study indicates that recognizing acoustic scenes by identifying distinct
sound events is effective and paves the way for future studies that combine
this strategy with previous ones.Comment: code URL typo, code is available at
https://github.com/hackerekcah/distinct-events-asc.gi
A Multicomponent Intervention Helped Reducing Sugar-Sweetened Beverage Intake in Economically Disadvantaged Hispanic Children
This study aimed to examine the effect of a multicomponent intervention program on consumption of sugar-sweetened beverages (SSBs), and lifestyle factors associated with SSB intake, in Hispanic children from low-income families
- …