29,577 research outputs found

    Sharing deep generative representation for perceived image reconstruction from human brain activity

    Full text link
    Decoding human brain activities via functional magnetic resonance imaging (fMRI) has gained increasing attention in recent years. While encouraging results have been reported in brain states classification tasks, reconstructing the details of human visual experience still remains difficult. Two main challenges that hinder the development of effective models are the perplexing fMRI measurement noise and the high dimensionality of limited data instances. Existing methods generally suffer from one or both of these issues and yield dissatisfactory results. In this paper, we tackle this problem by casting the reconstruction of visual stimulus as the Bayesian inference of missing view in a multiview latent variable model. Sharing a common latent representation, our joint generative model of external stimulus and brain response is not only "deep" in extracting nonlinear features from visual images, but also powerful in capturing correlations among voxel activities of fMRI recordings. The nonlinearity and deep structure endow our model with strong representation ability, while the correlations of voxel activities are critical for suppressing noise and improving prediction. We devise an efficient variational Bayesian method to infer the latent variables and the model parameters. To further improve the reconstruction accuracy, the latent representations of testing instances are enforced to be close to that of their neighbours from the training set via posterior regularization. Experiments on three fMRI recording datasets demonstrate that our approach can more accurately reconstruct visual stimuli

    Leveraging Node Attributes for Incomplete Relational Data

    Full text link
    Relational data are usually highly incomplete in practice, which inspires us to leverage side information to improve the performance of community detection and link prediction. This paper presents a Bayesian probabilistic approach that incorporates various kinds of node attributes encoded in binary form in relational models with Poisson likelihood. Our method works flexibly with both directed and undirected relational networks. The inference can be done by efficient Gibbs sampling which leverages sparsity of both networks and node attributes. Extensive experiments show that our models achieve the state-of-the-art link prediction results, especially with highly incomplete relational data.Comment: Appearing in ICML 201

    MetaLDA: a Topic Model that Efficiently Incorporates Meta information

    Full text link
    Besides the text content, documents and their associated words usually come with rich sets of meta informa- tion, such as categories of documents and semantic/syntactic features of words, like those encoded in word embeddings. Incorporating such meta information directly into the generative process of topic models can improve modelling accuracy and topic quality, especially in the case where the word-occurrence information in the training data is insufficient. In this paper, we present a topic model, called MetaLDA, which is able to leverage either document or word meta information, or both of them jointly. With two data argumentation techniques, we can derive an efficient Gibbs sampling algorithm, which benefits from the fully local conjugacy of the model. Moreover, the algorithm is favoured by the sparsity of the meta information. Extensive experiments on several real world datasets demonstrate that our model achieves comparable or improved performance in terms of both perplexity and topic quality, particularly in handling sparse texts. In addition, compared with other models using meta information, our model runs significantly faster.Comment: To appear in ICDM 201

    MATREX: the DCU MT system for WMT 2009

    Get PDF
    In this paper, we describe the machine translation system in the evaluation campaign of the Fourth Workshop on Statistical Machine Translation at EACL 2009. We describe the modular design of our multi-engine MT system with particular focus on the components used in this participation. We participated in the translation task for the following translation directions: French–English and English–French, in which we employed our multi-engine architecture to translate. We also participated in the system combination task which was carried out by the MBR decoder and Confusion Network decoder. We report results on the provided development and test sets

    Dirichlet belief networks for topic structure learning

    Full text link
    Recently, considerable research effort has been devoted to developing deep architectures for topic models to learn topic structures. Although several deep models have been proposed to learn better topic proportions of documents, how to leverage the benefits of deep structures for learning word distributions of topics has not yet been rigorously studied. Here we propose a new multi-layer generative process on word distributions of topics, where each layer consists of a set of topics and each topic is drawn from a mixture of the topics of the layer above. As the topics in all layers can be directly interpreted by words, the proposed model is able to discover interpretable topic hierarchies. As a self-contained module, our model can be flexibly adapted to different kinds of topic models to improve their modelling accuracy and interpretability. Extensive experiments on text corpora demonstrate the advantages of the proposed model.Comment: accepted in NIPS 201
    corecore