83 research outputs found

    Stability analysis of token-based wireless networked control systems under deception attacks

    Get PDF
    Currently, cyber-security has attracted a lot of attention, in particular in wireless industrial control networks (WICNs). In this paper, the stability of wireless networked control systems (WNCSs) under deception, attacks is studied with a token-based protocol applied to the data link layer (DLL) of WICNS. Since deception attacks cause the stability problem of WNCSs by changing the data transmitted over a wireless network, it is important to detect deception attacks, discard the injected false data and compensate for the missing data (i.e., the discarded original data with the injected false data). The main contributions of this paper are: 1) With respect to the character of the token-based protocol, a switched system model is developed. Different from the traditional switched system where the number of subsystems is fixed, in our new model this number will be changed under deception attacks. 2) For this model, a new Kalman filter (KF) is developed for the purpose of attack detection and the missing data reconstruction. 3) For the given linear feedback WNCSs, when the noise level is below a threshold derived in this paper, the maximum allowable duration of deception attacks is obtained to maintain the exponential stability of the system. Finally, a numerical example based on a linearized model of an inverted pendulum is provided to demonstrate the proposed design

    Event‐triggered H

    No full text

    A Novel Sparse False Data Injection Attack Method in Smart Grids with Incomplete Power Network Information

    No full text
    The paper investigates a novel sparse false data injection attack method in a smart grid (SG) with incomplete power network information. Most existing methods usually require the known complete power network information of SG. The main objective of this paper is to propose an effective sparse false data injection attack strategy under a more practical situation where attackers can only have incomplete power network information and limited attack resources to access the measurements. Firstly, according to the obtained measurements and power network information, some incomplete power network information is compensated by using the power flow equation approach. Then, the fault tolerance range of bad data detection (BDD) for the attack residual increment is estimated by calculating the detection threshold of the residual L2-norm test. Finally, an effective sparse imperfect strategy is proposed by converting the choice of measurements into a subset selection problem, which is solved by the locally regularized fast recursive (LRFR) algorithm to effectively improve the sparsity of attack vectors. Simulation results on an IEEE 30-bus system and a real distribution network system confirm the feasibility and effectiveness of the proposed new attack construction method
    corecore