125 research outputs found
Simulation of Fragmentation Characteristics of Projectile Jacket Made of Tungsten Alloy after Penetrating Metal Target Plate using SPH Method
A smooth particle hydrodynamics (SPH) model was used to simulate the fragmentation process of the jacket during penetrator with lateral efficiency (PELE) penetrating the metal target plate to study the fragmentation characteristics of PELE jacket made of tungsten alloy. The validity of the SPH model was verified by experimental results. Then the SPH model was used to simulate the jacket fragmentation under different impact velocity and thickness of target plate. The influence of impact velocity and thickness of target plate on the jacket fragmentation was obtained by analysing the mass distribution and quantity distribution of the fragments formed by the jacket. The results show that the dynamic fragmentation of tungsten alloy can be simulated effectively using the SPH model, Johnson-Cook strength model, maximum tensile stress failure criterion and stochastic failure model. When the thickness of target plate is fixed, the greater the impact velocity, the greater the pressure produced by the projectile impacting the target plate; with the increase of impact velocity, the mass of residual projectile decreases, the number of fragments formed by fragmentation of jacket increases linearly, and the average mass of fragments decreases exponentially. When the impact velocity is constant, the greater the thickness of the target plate, the longer the pressure duration by the projectile impacting the target plate; with the increase of the thickness of target plate, the mass of residual projectile decreases, the number of fragments formed by fragmentation of jacket increases linearly, and the average mass of fragments decreases exponentially. The numerical calculation model and research method adopted in this paper can be used to study the impact fragmentation of solid materials effectively
Fragmentation Behaviour of Radial Layered PELE Impacting Thin Metal Target Plates
The fragmentation mechanism of the penetrator with lateral effect (PELE) after perforating a thin target plate has been summarised and analysed firstly. Then the fragmentation of radial layered PELE was analysed qualitatively and verified by experiment. In the experiment, the target plates were made of 45# steel and 2A12 aluminium respectively. Qualitative analysis and experimental results show that: for normal PELE without layered, after perforating the thin metal target plate, from the bottom to the head of the projectile, the number of fragments formed by the jacket gradually increases, and the mass of the fragment decreases correspondingly. Compared with the normal PELE without layered, the radial layered PELE is less likely to break into fragments, when impacting the thin metal target plate with the same material and thickness under the same impact velocity. However, from the mechanism of the PELE, when the resistance of the target plate is large enough, and the duration of pressure is long enough, the radial layered PELE also can break into fragments with transverse velocity component. The resistance of the target plate plays an important role in the fragmentation of radial layered PELE. The radial layered PELE produced massive fragments with transverse velocity component when impacting the 45# steel plate with5 mm thickness under the impact velocity of 657.2 m/s
JUNO Sensitivity to Invisible Decay Modes of Neutrons
We explore the bound neutrons decay into invisible particles (e.g.,
or ) in the JUNO liquid scintillator
detector. The invisible decay includes two decay modes: and . The invisible decays of -shell neutrons in
will leave a highly excited residual nucleus. Subsequently, some
de-excitation modes of the excited residual nuclei can produce a time- and
space-correlated triple coincidence signal in the JUNO detector. Based on a
full Monte Carlo simulation informed with the latest available data, we
estimate all backgrounds, including inverse beta decay events of the reactor
antineutrino , natural radioactivity, cosmogenic isotopes and
neutral current interactions of atmospheric neutrinos. Pulse shape
discrimination and multivariate analysis techniques are employed to further
suppress backgrounds. With two years of exposure, JUNO is expected to give an
order of magnitude improvement compared to the current best limits. After 10
years of data taking, the JUNO expected sensitivities at a 90% confidence level
are and
.Comment: 28 pages, 7 figures, 4 table
Penetration Fracture Mechanism of Tungsten-Fiber-Reinforced Zr-Based Bulk Metallic Glasses Matrix Composite under High-Velocity Impact
In order to adapt to the launch velocity of modern artillery, it is necessary to study the fracture mechanism of the high-velocity penetration of penetrators. Therefore, the penetration fracture mode of tungsten-fiber-reinforced Zr-based bulk metallic glass matrix composite (WF/Zr-MG) rods at a high velocity is studied. An experiment on WF/Zr-MG rods penetrating into rolled homogeneous armor steel (RHA) was carried out at 1470~1650 m/s. The experimental results show that the higher penetration ability of WF/Zr-MG rods not only results from their “self-sharpening” feature, but also due to the fact they have a longer quasi-steady penetration phase than tungsten alloy (WHA) rods. Above 1500 m/s, the penetration fracture mode of the WF/Zr-MG rod is the bending and backflow of tungsten fibers. Our theoretical calculation shows that the deformation mode of the Zr-based bulk metallic glass matrix (Zr-MG) is an important factor affecting the penetration fracture mode of the WF/Zr-MG rod. When the impact velocity increases from 1000 m/s to 1500 m/s, the deformation mode of Zr-MG changes from shear localization to non-Newtonian flow, leading to a change in the penetration fracture mode of the WF/Zr-MG rod from shear fracture to the bending and backflow of tungsten fibers
Time periodic solution to a two-species chemotaxis-Stokes system with -Laplacian diffusion
<p style='text-indent:20px;'>In this paper, we consider a two-species chemotaxis-Stokes system with <inline-formula><tex-math id="M2">\begin{document}\end{document}</tex-math></inline-formula>-Laplacian diffusion in two-dimensional smooth bounded domains. It is proved that the existence of time periodic solution for any <inline-formula><tex-math id="M3">\begin{document} \frac{15}{7}\leq p<3 \end{document}</tex-math></inline-formula> and any large periodic source <inline-formula><tex-math id="M4">\begin{document}\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M5">\begin{document}\end{document}</tex-math></inline-formula>.</p></jats:p
Robust Optimization Design of the Aerodynamic Shape and External Ballistics of a Pulse Trajectory Correction Projectile
To improve the tactical and technical performance of pulse correction projectiles while maintaining stability in uncertain conditions and considering practical engineering constraints, this study performs a multi-objective robust optimization design of the aerodynamic shape and external ballistics of a projectile. The study utilizes an aerodynamic force engineering algorithm and numerical trajectory calculations to obtain the projectile’s performance responses within the Latin hypercube design space. To enhance optimization efficiency, a stochastic Kriging surrogate model is established to capture the inherent uncertainty of limited input data. Ultimately, a Pareto optimal solution for the projectile is obtained using a non-dominated sorting multi-objective sparrow search algorithm. The results of this study demonstrate that the consideration of design uncertainty in the robust optimization of pulse correction projectiles leads to significant enhancements in both lateral correction ability and range while satisfying flight stability requirements. Moreover, when compared to deterministic optimization, the performance variability of the design is markedly improved. This research methodology provides valuable insights for optimizing the performance of pulse correction projectiles
A Design of Quad-Element Dual-Band MIMO Antenna for 5G Application
A dual-band four-element MIMO antenna was designed and fabricated with enhanced isolation. The introduced antenna was fed by a coplanar waveguide (CPW) and consisted of four identical monopole antenna elements placed perpendicular to each other. A cross-shaped stub and orthogonal placement of four elements were introduced for high isolation. Modified ground structure was used for extending bandwidths. The measured results demonstrate that the introduced antenna has double bands (S11 < −10 dB) covering 3.28–4.15 GHz and 4.69–6.01 GHz, with fractional bandwidths of 23.4% and 24.7% and a high isolation S21, S31 better than 19 dB. The curves of the envelope correlation coefficient (ECC) and diversity gain (DG) were less than 0.0025 and higher than 9.999, respectively, indicating a low correlation between antenna elements. Furthermore, gain, efficiency, channel capacity loss (CCL), total active reflection coefficient (TARC) and mean effective gain (MEG) have all been investigated over the operating band to determine the antenna’s diversity performance. In accordance with the simulated and measured results, it confirms that the proposed antenna is appropriate for 5G applications
- …
