45 research outputs found
Fragmentation Behaviour of Radial Layered PELE Impacting Thin Metal Target Plates
The fragmentation mechanism of the penetrator with lateral effect (PELE) after perforating a thin target plate has been summarised and analysed firstly. Then the fragmentation of radial layered PELE was analysed qualitatively and verified by experiment. In the experiment, the target plates were made of 45# steel and 2A12 aluminium respectively. Qualitative analysis and experimental results show that: for normal PELE without layered, after perforating the thin metal target plate, from the bottom to the head of the projectile, the number of fragments formed by the jacket gradually increases, and the mass of the fragment decreases correspondingly. Compared with the normal PELE without layered, the radial layered PELE is less likely to break into fragments, when impacting the thin metal target plate with the same material and thickness under the same impact velocity. However, from the mechanism of the PELE, when the resistance of the target plate is large enough, and the duration of pressure is long enough, the radial layered PELE also can break into fragments with transverse velocity component. The resistance of the target plate plays an important role in the fragmentation of radial layered PELE. The radial layered PELE produced massive fragments with transverse velocity component when impacting the 45# steel plate with5 mm thickness under the impact velocity of 657.2 m/s
Simulation of Fragmentation Characteristics of Projectile Jacket Made of Tungsten Alloy after Penetrating Metal Target Plate using SPH Method
A smooth particle hydrodynamics (SPH) model was used to simulate the fragmentation process of the jacket during penetrator with lateral efficiency (PELE) penetrating the metal target plate to study the fragmentation characteristics of PELE jacket made of tungsten alloy. The validity of the SPH model was verified by experimental results. Then the SPH model was used to simulate the jacket fragmentation under different impact velocity and thickness of target plate. The influence of impact velocity and thickness of target plate on the jacket fragmentation was obtained by analysing the mass distribution and quantity distribution of the fragments formed by the jacket. The results show that the dynamic fragmentation of tungsten alloy can be simulated effectively using the SPH model, Johnson-Cook strength model, maximum tensile stress failure criterion and stochastic failure model. When the thickness of target plate is fixed, the greater the impact velocity, the greater the pressure produced by the projectile impacting the target plate; with the increase of impact velocity, the mass of residual projectile decreases, the number of fragments formed by fragmentation of jacket increases linearly, and the average mass of fragments decreases exponentially. When the impact velocity is constant, the greater the thickness of the target plate, the longer the pressure duration by the projectile impacting the target plate; with the increase of the thickness of target plate, the mass of residual projectile decreases, the number of fragments formed by fragmentation of jacket increases linearly, and the average mass of fragments decreases exponentially. The numerical calculation model and research method adopted in this paper can be used to study the impact fragmentation of solid materials effectively
Robust Optimization Design of the Aerodynamic Shape and External Ballistics of a Pulse Trajectory Correction Projectile
To improve the tactical and technical performance of pulse correction projectiles while maintaining stability in uncertain conditions and considering practical engineering constraints, this study performs a multi-objective robust optimization design of the aerodynamic shape and external ballistics of a projectile. The study utilizes an aerodynamic force engineering algorithm and numerical trajectory calculations to obtain the projectile’s performance responses within the Latin hypercube design space. To enhance optimization efficiency, a stochastic Kriging surrogate model is established to capture the inherent uncertainty of limited input data. Ultimately, a Pareto optimal solution for the projectile is obtained using a non-dominated sorting multi-objective sparrow search algorithm. The results of this study demonstrate that the consideration of design uncertainty in the robust optimization of pulse correction projectiles leads to significant enhancements in both lateral correction ability and range while satisfying flight stability requirements. Moreover, when compared to deterministic optimization, the performance variability of the design is markedly improved. This research methodology provides valuable insights for optimizing the performance of pulse correction projectiles
Optimization of China Sponge City Design: The Case of Lincang Technology Innovation Park
China launched the sponge city (SPC) initiative in 2013 to reduce municipal stormwater runoff. The design criteria are mainly the annual comprehensive runoff coefficient (ACRC) regulated in a design guideline. Numerous SPC alternatives with varied low-impact development (LID) measures can be designed to meet the ACRC. Obviously, the optimization of SPC design is significant. This study provides an approach to SPC design optimization that applies an optimized module of SUSTAIN to simulate SPC performance over a 10-year period. The targeted volume reduction was derived from the SWMM model and corresponded to the ACRC criteria. Based on the reduction, the minimal cost and cost-effectiveness analyses were conducted. The proposed approach was applied to the Lincang Technology Innovation Park (LCTIP) as a test case. Three scenarios were analyzed: The original design implemented on the site, the landscape improved design, and the most economical design. The results indicated that the optimized alternative may save up to 12.3% of the cost while meeting that ACRC value. The approach improves upon SPC design, particularly with regards to flood control. The present research will help decision makers to develop and select the most appropriate SPC design that is most cost-effective
Penetration Gain Study of a Tungsten-Fiber/Zr-Based Metallic Glass Matrix Composite
A tungsten fiber/Zr-based bulk metallic glass matrix composite (Wf/Zr-MG) is a potential penetrator material. To compare and analyze the penetration behavior of Wf/Zr-MG and a tungsten heavy alloy (WHA), a penetration experiment into the 30CrMnMo homogeneous armor target plate (RHA) is conducted in the present paper, by using a 37 mm smooth bore artillery with an impact velocity of 1550 ± 40 m/s. Unlike the penetrator made of WHA, the self-sharpening phenomenon was observed in the nose of the Wf/Zr-MG rod. The experimental results indicate that the penetration ability of Wf/Zr-MG rod is approximately 10% higher than that of the WHA rod when the impact velocity is 1550 ± 40 m/s. The combined findings on the microscopic morphology, composition, hardness distribution around the crater, and the macroscopic structure of the penetrator residual show that under this impact velocity, the Wf/Zr-MG material shows amorphous gasification. The Wfs outside the rod shows bending and backflow, resulting in the maintenance of the self-sharpening nose of the penetrator during the penetration process. Moreover, the hardness peak around the crater formed by the Wf/Zr-MG rod is lower, and the penetration crater is straighter, indicating that the Wf/Zr-MG rod has a stronger slag removal ability, lower penetration resistance, and higher penetration efficiency. It is an ideal penetrator material
Penetration Gain Study of a Tungsten-Fiber/Zr-Based Metallic Glass Matrix Composite
A tungsten fiber/Zr-based bulk metallic glass matrix composite (Wf/Zr-MG) is a potential penetrator material. To compare and analyze the penetration behavior of Wf/Zr-MG and a tungsten heavy alloy (WHA), a penetration experiment into the 30CrMnMo homogeneous armor target plate (RHA) is conducted in the present paper, by using a 37 mm smooth bore artillery with an impact velocity of 1550 ± 40 m/s. Unlike the penetrator made of WHA, the self-sharpening phenomenon was observed in the nose of the Wf/Zr-MG rod. The experimental results indicate that the penetration ability of Wf/Zr-MG rod is approximately 10% higher than that of the WHA rod when the impact velocity is 1550 ± 40 m/s. The combined findings on the microscopic morphology, composition, hardness distribution around the crater, and the macroscopic structure of the penetrator residual show that under this impact velocity, the Wf/Zr-MG material shows amorphous gasification. The Wfs outside the rod shows bending and backflow, resulting in the maintenance of the self-sharpening nose of the penetrator during the penetration process. Moreover, the hardness peak around the crater formed by the Wf/Zr-MG rod is lower, and the penetration crater is straighter, indicating that the Wf/Zr-MG rod has a stronger slag removal ability, lower penetration resistance, and higher penetration efficiency. It is an ideal penetrator material
Semi-Crystalline Polymers Applied to Taylor Impact Test: Constitutive, Experimental and FEM Analysis
Based on mechanical properties of Polyamide 66 (PA66) under complex loading conditions, a Drucker–Prager yield criterion was employed to characterize its yield behavior. Then, a one-dimensional model, which contains a viscoelastic regime and a viscoplastic regime, was introduced and converted into a three-dimensional constitutive model. The three-dimensional model was implemented into a LS-DYNA software, which was used to predict the dynamic response of PA66 under Taylor impact conditions, whose corresponding tests were conducted by gas gun and recorded by high-speed camera. By contrasting the simulation results and these of the corresponding tests, the deformed shapes including the residual length, the maximum diameter and the shape of the mushroom head of the PA66 bars were found to be similar to these obtained from the tests, which verified the accuracy of the three-dimensional constitutive model, and proved that the model was able to be applied to high-rate impact loading conditions
Improved predictive performance of cyanobacterial blooms using a hybrid statistical and deep-learning method
Cyanobacterial harmful algal blooms (CyanoHABs) threaten ecosystem functioning and human health at both regional and global levels, and this threat is likely to become more frequent and severe under climate change. Predictive information can help local water managers to alleviate or manage the adverse effects posed by CyanoHABs. Previous works have led to various approaches for predicting cyanobacteria abundance by feeding various environmental variables into statistical models or neural networks. However, these models alone may have limited predictive performance owing to their inability to capture extreme situations. In this paper, we consider the possibility of a hybrid approach that leverages the merits of these methods by integrating a statistical model with a deep-learning model. In particular, the autoregressive integrated moving average (ARIMA) and long short-term memory (LSTM) were used in tandem to better capture temporal patterns of highly dynamic observations. Results show that the proposed ARIMA-LSTM model exhibited the promising potential to outperform the state-of-the-art baseline models for CyanoHAB prediction in highly variable time-series observations, characterized by nonstationarity and imbalance. The predictive error of the mean absolute error and root mean square error, compared with the best baseline model, were largely reduced by 12.4% and 15.5%, respectively. This study demonstrates the potential for the hybrid model to assist in cyanobacterial risk assessment and management, especially in shallow and eutrophic waters