11 research outputs found
Sparse Linear Identifiable Multivariate Modeling
In this paper we consider sparse and identifiable linear latent variable
(factor) and linear Bayesian network models for parsimonious analysis of
multivariate data. We propose a computationally efficient method for joint
parameter and model inference, and model comparison. It consists of a fully
Bayesian hierarchy for sparse models using slab and spike priors (two-component
delta-function and continuous mixtures), non-Gaussian latent factors and a
stochastic search over the ordering of the variables. The framework, which we
call SLIM (Sparse Linear Identifiable Multivariate modeling), is validated and
bench-marked on artificial and real biological data sets. SLIM is closest in
spirit to LiNGAM (Shimizu et al., 2006), but differs substantially in
inference, Bayesian network structure learning and model comparison.
Experimentally, SLIM performs equally well or better than LiNGAM with
comparable computational complexity. We attribute this mainly to the stochastic
search strategy used, and to parsimony (sparsity and identifiability), which is
an explicit part of the model. We propose two extensions to the basic i.i.d.
linear framework: non-linear dependence on observed variables, called SNIM
(Sparse Non-linear Identifiable Multivariate modeling) and allowing for
correlations between latent variables, called CSLIM (Correlated SLIM), for the
temporal and/or spatial data. The source code and scripts are available from
http://cogsys.imm.dtu.dk/slim/.Comment: 45 pages, 17 figure
Bayesian Sparse Factor Models and DAGs Inference and Comparison
In this paper we present a novel approach to learn directed acyclic graphs (DAGs) and factor models within the same framework while also allowing for model comparison between them. For this purpose, we exploit the connection between factor models and DAGs to propose Bayesian hierarchies based on spike and slab priors to promote sparsity, heavy-tailed priors to ensure identifiability and predictive densities to perform the model comparison. We require identifiability to be able to produce variable orderings leading to valid DAGs and sparsity to learn the structures. The effectiveness of our approach is demonstrated through extensive experiments on artificial and biological data showing that our approach outperform a number of state of the art methods.