40 research outputs found
Critical Casimir forces along the iso-fields
Using quasi-exact numerical density-matrix renormalization-group techniques
we calculate the critical Casimir force for a two-dimensional (2D) Ising strip
with equal strong surface fields, along the thermodynamic paths corresponding
to the fixed nonzero bulk field h0. Using the Derjaguin approximation we also
determine the critical Casimir force and its potential for two discs. We find
that varying the temperature along the iso-fields lying between the bulk
coexistence and the capillary condensation critical point leads to a dramatic
increase of the critical Casimir interactions with a qualitatively different
functional dependence on the temperature than along h=0. These findings might
be of relevance for biomembranes, whose heterogeneity is recently interpreted
as being connected with a critical behavior belonging to the 2D Ising
universality class.Comment: 9 pages, 12 figures, submitted to Physical Review
Solvation force for long ranged wall-fluid potentials
The solvation force of a simple fluid confined between identical planar walls
is studied in two model systems with short ranged fluid-fluid interactions and
long ranged wall-fluid potentials decaying as , for
various values of . Results for the Ising spins system are obtained in two
dimensions at vanishing bulk magnetic field by means of the
density-matrix renormalization-group method; results for the truncated
Lennard-Jones (LJ) fluid are obtained within the nonlocal density functional
theory. At low temperatures the solvation force for the Ising film
is repulsive and decays for large wall separations in the same fashion as
the boundary field , whereas for temperatures larger than
the bulk critical temperature is attractive and the asymptotic decay
is . For the LJ fluid system is always
repulsive away from the critical region and decays for large with the the
same power law as the wall-fluid potential. We discuss the influence of the
critical Casimir effect and of capillary condensation on the behaviour of the
solvation force.Comment: 48 pages, 12 figure
Solvation forces in Ising films with long-range boundary fields: density-matrix renormalization-group study
Using the quasi-exact density-matrix renormalization-group method we
calculate the solvation forces in two-dimensional Ising films of thickness L
subject to identical algebraically decaying boundary fields with various decay
exponents p. At the bulk critical point the solvation force acquires a
universal contribution which is long-ranged in L due to the critical
fluctuations, a phenomenon known as the critical Casimir effect. For p = 2, 3
and 50, we study the scaling behaviour of the solvation force along the
pseudo-phase coexistence and along the critical and sub-critical isotherms.Comment: 9 pages, 6 figures, accepted to Molecular Physic
Crossover from Reptation to Rouse dynamics in the Cage Model
The two-dimensional cage model for polymer motion is discussed with an
emphasis on the effect of sideways motions, which cross the barriers imposed by
the lattice. Using the Density Matrix Method as a solver of the Master
Equation, the renewal time and the diffusion coefficient are calculated as a
function of the strength of the barrier crossings. A strong crossover influence
of the barrier crossings is found and it is analyzed in terms of effective
exponents for a given chain length. The crossover scaling functions and the
crossover scaling exponents are calculated.Comment: RevTeX, 11 PostScript figures include
On the surface critical behaviour in Ising strips: density-matrix renormalization-group study
Using the density-matrix renormalization-group method we study the surface
critical behaviour of the magnetization in Ising strips in the subcritical
region. Our results support the prediction that the surface magnetization in
the two phases along the pseudo-coexistence curve also behaves as for the
ordinary transition below the wetting temperature for the finite value of the
surface field.Comment: 15 pages, 9 figure
Influence of Capillary Condensation on the Near-Critical Solvation Force
We argue that in a fluid, or magnet, confined by adsorbing walls which favour
liquid, or (+) phase, the solvation (Casimir) force in the vicinity of the
critical point is strongly influenced by capillary condensation which occurs
below the bulk critical temperature T_c. At T slightly below and above T_c, a
small bulk field h<0, which favours gas, or (-) phase, leads to residual
condensation and a solvation force which is much more attractive (at the same
large wall separation) than that found exactly at the critical point. Our
predictions are supported by results obtained from density-matrix
renormalization-group calculations in a two-dimensional Ising strip subject to
identical surface fields.Comment: 4 Pages, RevTeX, and 3 figures include