2 research outputs found

    Import of cytochrome c heme lyase into mitochondria

    Get PDF
    Cytochrome c heme lyase (CCHL) catalyses the covalent attachment of the heme group to apocytochrome c during its import into mitochondria. The enzyme is membrane-associated and is located within the intermembrane space. The precursor of CCHL synthesized in vitro was efficiently translocated into isolated mitochondria from Neurospora crassa. The imported CCHL, like the native protein, was correctly localized to the intermembrane space, where it was membrane-bound. As with the majority of mitochondrial precursor proteins, CCHL uses the MOM19-GIP receptor complex in the outer membrane for import. In contrast to proteins taking the general import route, CCHL was imported independently of both ATP-hydrolysis and an electrochemical potential as external energy sources. CCHL which lacks a cleavable signal sequence apparently does not traverse the inner membrane to reach the intermembrane space; rather, it translocates through the outer membrane only. Thus, CCHL represents an example of a novel, 'non-conservative' import pathway into the intermembrane space, thereby also showing that the import apparatus in the outer membrane acts separately from the import machinery in the inner membrane

    A mutant of Neurospora crassa deficient in cytochrome c heme lyase activity cannot import cytochrome c into mitochondria

    Get PDF
    The nuclear cyt-2-1 mutant of Neurospora crassa is characterized by a gross deficiency of cytochrome c (Bertrand, H., and Collins, R. A. (1978) Mol. Gen. Genet. 166, 1-13). The mutant produces mRNA that can be translated into apocytochrome c in vitro. Apocytochrome c is also synthesized in vivo in cyt-2-1, but it is rapidly degraded and thus does not accumulate in the cytosol. Mitochondria from wild-type cells bind apocytochrome c made in vitro from either wild-type or cyt-2-1 mRNA and convert it to holocytochrome c. This conversion depends on the addition of heme by cytochrome c heme lyase and is coupled to translocation of cytochrome c into the intermembrane space. Mitochondria from the cyt-2-1 strain are deficient in the ability to bind apocytochrome c. They are also completely devoid of cytochrome c heme lyase activity. These defects explain the inability of the cyt-2-1 mutant to convert apocytochrome c to the holo form and to import it into mitochondria
    corecore