7 research outputs found

    Longitudinal profiling identifies co-occurring BRCA1/2 reversions, TP53BP1, RIF1 and PAXIP1 mutations in PARP inhibitor-resistant advanced breast cancer

    No full text
    Background: Resistance to therapies that target homologous recombination deficiency (HRD) in breast cancer limits their overall effectiveness. Multiple, preclinically validated, mechanisms of resistance have been proposed, but their existence and relative frequency in clinical disease are unclear, as is how to target resistance. Patients and methods: Longitudinal mutation and methylation profiling of circulating tumour (ct)DNA was carried out in 47 patients with metastatic BRCA1-, BRCA2- or PALB2-mutant breast cancer treated with HRD-targeted therapy who developed progressive disease—18 patients had primary resistance and 29 exhibited response followed by resistance. ctDNA isolated at multiple time points in the patient treatment course (before, on-treatment and at progression) was sequenced using a novel &gt;750-gene intron/exon targeted sequencing panel. Where available, matched tumour biopsies were whole exome and RNA sequenced and also used to assess nuclear RAD51. Results: BRCA1/2 reversion mutations were present in 60% of patients and were the most prevalent form of resistance. In 10 cases, reversions were detected in ctDNA before clinical progression. Two new reversion-based mechanisms were identified: (i) intragenic BRCA1/2 deletions with intronic breakpoints; and (ii) intragenic BRCA1/2 secondary mutations that formed novel splice acceptor sites, the latter being confirmed by in vitro minigene reporter assays. When seen before commencing subsequent treatment, reversions were associated with significantly shorter time to progression. Tumours with reversions retained HRD mutational signatures but had functional homologous recombination based on RAD51 status. Although less frequent than reversions, nonreversion mechanisms [loss-of-function (LoF) mutations in TP53BP1, RIF1 or PAXIP1] were evident in patients with acquired resistance and occasionally coexisted with reversions, challenging the notion that singular resistance mechanisms emerge in each patient. Conclusions: These observations map the prevalence of candidate drivers of resistance across time in a clinical setting, information with implications for clinical management and trial design in HRD breast cancers.</p

    Functional genomic landscape of acute myeloid leukaemia

    No full text
    The implementation of targeted therapies for acute myeloid leukaemia (AML) has been challenging because of the complex mutational patterns within and across patients as well as a dearth of pharmacologic agents for most mutational events. Here we report initial findings from the Beat AML programme on a cohort of 672 tumour specimens collected from 562 patients. We assessed these specimens using whole-exome sequencing, RNA sequencing and analyses of ex vivo drug sensitivity. Our data reveal mutational events that have not previously been detected in AML. We show that the response to drugs is associated with mutational status, including instances of drug sensitivity that are specific to combinatorial mutational events. Integration with RNA sequencing also revealed gene expression signatures, which predict a role for specific gene networks in the drug response. Collectively, we have generated a dataset-accessible through the Beat AML data viewer (Vizome)-that can be leveraged to address clinical, genomic, transcriptomic and functional analyses of the biology of AML

    Targeting tumour microenvironment by tyrosine kinase inhibitor

    No full text
    corecore