122 research outputs found

    Early-life-history profiles, seasonal abundance, and distribution of four species of Clupeid larvae from the northern Gulf of Mexico, 1982 and 1983

    Get PDF
    We present data on ichthyoplankton distribution, abundance, and seasonality and supporting environmental information for four species of coastal pelagics from the family Clupeidae: round herring Etrumeus teres, scaled sardine Harengula jaguana, Atlantic thread herring Opisthonema oglinum, and Spanish sardine Sardinella aurita. Data are from 1982 and 1983 cruises across the northern Gulf of Mexico sponsored by the Southeastern Area Monitoring and Assessment Program (SEAMAP). This is the first such examination for these species on a multiyear and gulfwide scale. Bioproflles on reproductive biology, early life history, meristics, adult distribution, and fisheries characteristics are also presented for these species. During the summer, larval Atlantic thread herring and scaled and Spanish sardines were abundant on the inner shelf <40 m depth), but were rare or absent in deeper waters. Scaled sardine and thread herring were found virtually everywhere inner-shelf waters were sampled, but Spanish sardines were rare in the north-central Gulf. During 1982, larval Atlantic thread herring were the most abundant of the four target c1upeid species, whereas Spanish sardine were the most abundant during 1983. On the west Florida shelf, Spanish sardine dominated larval c1upeid populations both years. Scaled sardine larvae were the least abundant of the four species both years, but were still captured in 25% of inner-shelf bongo net collections. Round herring larvae, collected February-early June (primarily March-April), were abundant on the outer shelf (40-182 m depth) and especially off Louisiana. Over the 2-year period, outer-shelf mean abundance for round herring was 40.2 larvae/10 m2; inner-shelf mean abundances for scaled sardine, Atlantic thread herring, and Spanish sardine were 14.9, 39.2, and 41.9 larvae/l0 m2, respectively. (PDF file contains 66 pages.

    Cooling of Sr to high phase-space density by laser and sympathetic cooling in isotopic mixtures

    Get PDF
    Based on an experimental study of two-body and three-body collisions in ultracold strontium samples, a novel optical-sympathetic cooling method in isotopic mixtures is demonstrated. Without evaporative cooling, a phase-space density of 6×10−26\times10^{-2} is obtained with a high spatial density that should allow to overcome the difficulties encountered so far to reach quantum degeneracy for Sr atoms.Comment: 5 pages, 4 figure

    Laser cooling and trapping of atomic strontium for ultracold atom physics, high-precision spectroscopy and quantum sensors

    Get PDF
    This review describes the production of atomic strontium samples at ultra-low temperature and at high phase-space density, and their possible use for physical studies and applications. We describe the process of loading a magneto-optical trap from an atomic beam and preparing the sample for high precision measurements. Particular emphasis is given to the applications of ultracold Sr samples, spanning from optical frequency metrology to force sensing at micrometer scale

    Optical frequency standard with ultra-cold strontium atoms

    Get PDF

    Strontium optical-atomic-clock

    Get PDF

    Cooling and trapping of ultra-cold strontium isotopic mixtures

    Get PDF
    We present the simultaneous cooling and trapping of an isotopic mixture in a magneto-optical trap and we describe the transfer of the mixture into a conservative, far-off resonant dipole trap. The mixture is prepared with a new technique that applies to intermediate and heavy alkaline earth like atoms. In this work, 88Sr and 86Sr are simultaneously loaded first into the magneto-optical trap operated on the 1S0-3P1 spin-forbidden line at 689 nm, and then transferred into the dipole trap. We observe fast inter-species thermalization in the dipole trap which allows one to set a lower bound on the 88Sr-86Sr elastic cross section

    Atom made from charged elementary black hole

    Get PDF
    It is believed that there may have been a large number of black holes formed in the very early universe. These would have quantised masses. A charged ``elementary black hole'' (with the minimum possible mass) can capture electrons, protons and other charged particles to form a ``black hole atom''. We find the spectrum of such an object with a view to laboratory and astronomical observation of them, and estimate the lifetime of the bound states. There is no limit to the charge of the black hole, which gives us the possibility of observing Z>137 bound states and transitions at the lower continuum. Negatively charged black holes can capture protons. For Z>1, the orbiting protons will coalesce to form a nucleus (after beta-decay of some protons to neutrons), with a stability curve different to that of free nuclei. In this system there is also the distinct possibility of single quark capture. This leads to the formation of a coloured black hole that plays the role of an extremely heavy quark interacting strongly with the other two quarks. Finally we consider atoms formed with much larger black holes.Comment: 22 pages, 4 figure

    Laser Cooling and Trapping of Atomic Strontium for Ultracold Atoms Physics, High-Precision Spectroscopy and Quantum Sensors

    Get PDF
    This review describes the production of atomic strontium samples at ultra-low temperature and at high phase-space density, and their possible use for physical studies and applications. We describe the process of loading a magneto-optical trap from an atomic beam and preparing the sample for high precision measurements. Particular emphasis is given to the applications of ultracold Sr samples, spanning from optical frequency metrology to force sensing at micrometer scale.Comment: 34 pages, 19 figure
    • 

    corecore