10 research outputs found

    Early identification of residual disease after neuroendocrine tumor resection using a liquid biopsy multigenomic mRNA signature (NETest)

    Full text link
    Introduction Surgery is the only cure for neuroendocrine tumors (NETs), with R0 resection being critical for successful tumor removal. Early detection of residual disease is key for optimal management, but both imaging and current biomarkers are ineffective post-surgery. NETest, a multigene blood biomarker, identifies NETs with >90% accuracy. We hypothesized that surgery would decrease NETest levels and that elevated scores post-surgery would predict recurrence. Methods This was a multicenter evaluation of surgically treated primary NETs (n = 153). Blood sampling was performed at day 0 and postoperative day (POD) 30. Follow-up included computed tomography/magnetic resonance imaging (CT/MRI), and messenger RNA (mRNA) quantification was performed by polymerase chain reaction (PCR; NETest score: 0–100; normal ≤20). Statistical analyses were performed using the Mann–Whitney U-test, Chi-square test, Kaplan–Meier survival, and area under the receiver operating characteristic curve (AUROC), as appropriate. Data are presented as mean ± standard deviation. Results The NET cohort (n = 153) included 57 patients with pancreatic cancer, 62 patients with small bowel cancer, 27 patients with lung cancer, 4 patients with duodenal cancer, and 3 patients with gastric cancer, while the surgical cohort comprised patients with R0 (n = 102) and R1 and R2 (n = 51) resection. The mean follow-up time was 14 months (range 3–68). The NETest was positive in 153/153 (100%) samples preoperatively (mean levels of 68 ± 28). In the R0 cohort, POD30 levels decreased from 62 ± 28 to 22 ± 20 (p 20 had image-identifiable recurrence. An NETest score of >20 predicted recurrence with 100% sensitivity and correlated with residual disease (Chi-square 17.1, p 20 predicted radiologically recurrent disease with 94% accuracy and 100% sensitivity. R0 resection appears to be ineffective in approximately 30% of patients. NET mRNA blood levels provide early objective genomic identification of residual disease and may facilitate management

    Interactions Between Land Cover/Use Change and Hydrology

    Full text link
    The water cycle is a vital component of the North Eurasian environment and plays a central role in the region’s climate, biology, biogeochemistry and in human interactions with the natural environment. The Northern Eurasian arctic drainage covers more than 2/3 of the pan-arctic land mass. Substantial changes in land cover and land use have occurred over the region in recent decades, as a result of changes in climate, permafrost, and water management, among other factors. These changes are likely to affect large-scale linkages between the regional and global climate system, but the nature of these interactions is not well understood. In this chapter, we analyze changes in the dominant hydrological components and explore the interaction of the terrestrial and atmospheric water cycles, with particular attention to key regional cryospheric processes and linkages between the water and carbon cycles. The monitoring of the water cycle from observational networks and remote sensing along with strategies for improving hydrological change detection are discussed in the context of changes in land cover and land use
    corecore