3 research outputs found

    Ecodynamics and bioavailability of metal contaminants in a constructed wetland within an agricultural drained catchment

    No full text
    International audienceConstructed wetlands are designed to mitigate nutrient and pesticide fluxes from agricultural catchments. Nevertheless, information on their efficiency in removing non-degradable contaminants such as metals is still scarce. This study aimed to explore the metallic signature and fate of metals within the Rampillon wetland (France) receiving water from a drained 355-ha catchment under intensive agriculture. Original monitoring coupling classic, time-integrated and bioaccumulation-based tools was achieved to characterise spatiotemporal dynamics of various metals (As, Cd, Cr, Co, Cu, Mn, Ni, Pb, Sb, Se and Zn). To assess metal inflows and mitigation, samples of dissolved and particulate metals were collected bimonthly at the inlet and outlet of the wetland over 3 months. Simultaneously, time-integrated (sediment traps and passive samplers) and bioaccumulation-based (caged gammarids and biofilms) tools were deployed to monitor temporal changes in metal speciation and bioavailability. To gain insight into the spatial distribution of metals between abiotic and biotic matrices, sediments and indigenous invertebrates with contrasted ecologies were sampled in different cells of the wetland. The results showed time-integrated tools were more suitable than bimonthly samples to quantify metal mitigations because of temporal fluctuations and low contamination levels. Significant mitigations were thus observed in trapped sediments for all metals (ranged 11–23%, except Mn) as well as in the DGT-labile fraction for Cd, Cr, Co, Mn and Ni (ranged 13–51%). Bioaccumulation levels in biofilms also revealed a decrease in metal bioavailability at the outlet. Furthermore, the spatial survey supported the central role of sediments in metal trapping and the beneficial effect of this wetland for local biodiversity in terms of exposure. To conclude, this study provides valuable information on the ecodynamics and bioavailability of metals required for sustainable management of such artificial ecosystems and furthermore, of agricultural areas

    Correction: Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19

    No full text
    International audienc

    Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19

    No full text
    BackgroundWe previously reported that impaired type I IFN activity, due to inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity or to autoantibodies against type I IFN, account for 15-20% of cases of life-threatening COVID-19 in unvaccinated patients. Therefore, the determinants of life-threatening COVID-19 remain to be identified in similar to 80% of cases.MethodsWe report here a genome-wide rare variant burden association analysis in 3269 unvaccinated patients with life-threatening COVID-19, and 1373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. Among the 928 patients tested for autoantibodies against type I IFN, a quarter (234) were positive and were excluded.ResultsNo gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7, with an OR of 27.68 (95%CI 1.5-528.7, P=1.1x10(-4)) for biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (OR=3.70[95%CI 1.3-8.2], P=2.1x10(-4)). This enrichment was further strengthened by (1) adding the recently reported TYK2 and TLR7 COVID-19 loci, particularly under a recessive model (OR=19.65[95%CI 2.1-2635.4], P=3.4x10(-3)), and (2) considering as pLOF branchpoint variants with potentially strong impacts on splicing among the 15 loci (OR=4.40[9%CI 2.3-8.4], P=7.7x10(-8)). Finally, the patients with pLOF/bLOF variants at these 15 loci were significantly younger (mean age [SD]=43.3 [20.3] years) than the other patients (56.0 [17.3] years; P=1.68x10(-5)).ConclusionsRare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60 years old
    corecore