2 research outputs found

    The Soluble Fms-like Tyrosine Kinase-1 Contributes to Structural and Functional Changes in Endothelial Cells in Chronic Kidney Disease

    No full text
    Endothelial cells are a critical target of the soluble Fms-like tyrosine kinase-1 (sFlt-1), a soluble factor increased in different diseases with varying degrees of renal impairment and endothelial dysfunction, including chronic kidney disease (CKD). Although the mechanisms underlying endothelial dysfunction are multifactorial and complex, herein, we investigated the damaging effects of sFlt-1 on structural and functional changes in endothelial cells. Our results evidenced that sera from patients with CKD stiffen the endothelial cell cortex in vitro, an effect correlated with sFlt-1 levels and prevented by sFlt-1 neutralization. Besides, we could show that recombinant sFlt-1 leads to endothelial stiffening in vitro and in vivo. This was accompanied by cytoskeleton reorganization and changes in the endothelial barrier function, as observed by increased actin polymerization and endothelial cell permeability, respectively. These results depended on the activation of the p38 MAPK and were blocked by the specific inhibitor SB203580. However, sFlt-1 only minimally affected the expression of stiffness-sensitive genes. These findings bring new insight into the mechanism of action of sFlt-1 and its biological effects that cannot be exclusively ascribed to the regulation of angiogenesis

    A Dietary Supplement Containing Fucoidan Preserves Endothelial Glycocalyx through ERK/MAPK Signaling and Protects against Damage Induced by CKD Serum

    No full text
    (1) Damage to the endothelial glycocalyx (eGC), a protective layer lining the endothelial luminal surface, is associated with chronic kidney disease (CKD), which leads to a worsening of cardiovascular outcomes in these patients. Currently, there are no targeted therapeutic approaches. Whether the dietary supplement EndocalyxTM (ECX) protects against endothelial damage caused by uremic toxins is unknown. (2) We addressed this question by performing atomic force microscopy measurements on living endothelial cells. We examined the effect of ECX on eGC thickness at baseline and with pooled serum from hemodialysis patients. ECX was also successfully administered in vivo in mice, in which eGC was assessed using perfused boundary region measurements by intravital microscopy of cremasteric vessels. (3) Both ECX and fucoidan significantly improved baseline eGC thickness. Our data indicate that these effects are dependent on ERK/MAPK and PI3K signaling. After incubation with eGC damaging serum from dialysis patients, ECX increased eGC height. Intravital microscopy in mice revealed a relevant increase in baseline eGC dimensions after feeding with ECX. (4) We identified a dietary supplement containing glycocalyx substrates and fucoidan as potential mediators of eGC preservation in vitro and in vivo. Our findings suggest that fucoidan may be an essential component responsible for protecting the eGC in acute settings. Moreover, ECX might contribute to both protection and rebuilding of the eGC in the context of CKD
    corecore