7 research outputs found

    Three-dimensional checkerboard spin structure on a breathing pyrochlore lattice

    Full text link
    The standard approach to realize a spin liquid state is through magnetically frustrated states, relying on ingredients such as the lattice geometry, dimensionality, and magnetic interaction type of the spins. While Heisenberg spins on a pyrochlore lattice with only antiferromagnetic nearest neighbors interactions are theoretically proven disordered, spins in real systems generally include longer-range interactions. The spatial correlations at longer distances typically stabilize a long-range order rather than enhancing a spin liquid state. Both states can, however, be destroyed by short-range static correlations introduced by chemical disorder. Here, using disorder-free specimens with a clear long-range antiferromagnetic order, we refine the spin structure of the Heisenberg spinel ZnFe2O4 through neutron magnetic diffraction. The unique wave vector (1, 0, 1/2) leads to a spin structure that can be viewed as alternatively stacked ferromagnetic and antiferromagnetic tetrahedra in a three-dimensional checkerboard form. Stable coexistence of these opposing types of clusters is enabled by the bipartite breathing-pyrochlore crystal structure, leading to a second order phase transition at 10 K. The diffraction intensity of ZnFe2O4 is an exact complement to the inelastic scattering intensity of several chromate spinel systems which are regarded as model classical spin liquids. Our results challenge this attribution, and suggest instead of the six-spin ring-mode, spin excitations in chromate spinels are closely related to the (1, 0, 1/2) type of spin order and the four-spin ferromagnetic cluster locally at one tetrahedron.Comment: Submitted to Phys. Rev.

    Controlling inversion disorder in a stoichiometric spinel magnet

    Get PDF
    In the study of frustrated quantum magnets, it is essential to be able to control the nature and degree of site disorder during the growth process, as many measurement techniques are incapable of distinguishing between site disorder and frustration-induced spin disorder. Pyrochlore-structured spinel oxides can serve as model systems of geometrically frustrated three-dimensional quantum magnets; however, the nature of the magnetism in one well-studied spinel, ZnFe2O4, remains unclear. Here, we demonstrate simultaneous control of both stoichiometry and inversion disorder in the growth of ZnFe2O4 single crystals, directly yielding a revised understanding of both the collective spin behavior and lattice symmetry. Crystals grown in the stoichiometric limit with minimal site inversion disorder contravene all the previously suggested exotic spin phases in ZnFe2O4. Furthermore, the structure is confirmed on the F4¯3m space group with broken inversion symmetry that induces antiferroelectricity. The effective tuning of magnetic behavior by site disorder in the presence of robust antiferroelectricity makes ZnFe2O4 of special interest to multiferroic devices
    corecore