5 research outputs found

    Absolute calibration method for fast-streaked, fiber optic light collection, spectroscopy systems.

    No full text
    This report outlines a convenient method to calibrate fast (<1ns resolution) streaked, fiber optic light collection, spectroscopy systems. Such a system is used to collect spectral data on plasmas generated in the A-K gap of electron beam diodes fielded on the RITS-6 accelerator (8-12MV, 140-200kA). On RITS, light is collected through a small diameter (200 micron) optical fiber and recorded on a fast streak camera at the output of 1 meter Czerny-Turner monochromator (F/7 optics). To calibrate such a system, it is necessary to efficiently couple light from a spectral lamp into a 200 micron diameter fiber, split it into its spectral components, with 10 Angstroms or less resolution, and record it on a streak camera with 1ns or less temporal resolution

    Shot reproducibility of the self-magnetic-pinch diode at 4.5 MV

    No full text
    In experiments conducted at Sandia National Laboratories’ RITS-6 accelerator, the self-magnetic-pinch diode exhibits significant shot-to-shot variability. Specifically, for identical hardware operated at the same voltage, some shots exhibit a catastrophic drop in diode impedance. A study is underway to identify sources of shot-to-shot variations which correlate with diode impedance collapse. The scope of this report is limited to data collected at 4.5-MV peak voltage and sources of variability which occur away from the diode, such as sheath electron emission and trajectories, variations in pulsed power, load and transmission line alignment, and different field shapers. We find no changes in the transmission line hardware, alignment, or hardware preparation methods which correlate with impedance collapse. However, in classifying good versus poor shots, we find that there is not a continuous spectrum of diode impedance behavior but that the good and poor shots can be grouped into two distinct impedance profiles. In poor shots, the sheath current in the load region falls from 16%–30% of the total current to less than 10%. This result will form the basis of a follow-up study focusing on the variability resulting from diode physics

    Investigations of shot reproducibility for the SMP diode at 4.5 MV.

    No full text
    In experiments conducted on the RITS-6 accelerator, the SMP diode exhibits sig- ni cant shot-to-shot variability. Speci cally, for identical hardware operated at the same voltage, some shots exhibit a catastrophic drop in diode impedance. A study is underway to identify sources of shot-to-shot variations which correlate with diode impedance collapse. To remove knob emission as a source, only data from a shot series conducted with a 4.5-MV peak voltage are considered. The scope of this report is limited to sources of variability which occur away from the diode, such as power ow emission and trajectory changes, variations in pulsed power, dustbin and transmission line alignment, and di erent knob shapes. We nd no changes in the transmission line hardware, alignment, or hardware preparation methods which correlate with impedance collapse. However, in classifying good versus poor shots, we nd that there is not a continuous spectrum of diode impedance behavior but that the good and poor shots can be grouped into two distinct impedance pro les. This result forms the basis of a follow-on study focusing on the variability resulting from diode physics.
    corecore