62 research outputs found
Screened Coulomb interactions in metallic alloys: I. Universal screening in the atomic sphere approximation
We have used the locally self-consistent Green's function (LSGF) method in
supercell calculations to establish the distribution of the net charges
assigned to the atomic spheres of the alloy components in metallic alloys with
different compositions and degrees of order. This allows us to determine the
Madelung potential energy of a random alloy in the single-site mean field
approximation which makes the conventional single-site density-functional-
theory coherent potential approximation (SS-DFT-CPA) method practically
identical to the supercell LSGF method with a single-site local interaction
zone that yields an exact solution of the DFT problem. We demonstrate that the
basic mechanism which governs the charge distribution is the screening of the
net charges of the alloy components that makes the direct Coulomb interactions
short-ranged. In the atomic sphere approximation, this screening appears to be
almost independent of the alloy composition, lattice spacing, and crystal
structure. A formalism which allows a consistent treatment of the screened
Coulomb interactions within the single-site mean-filed approximation is
outlined. We also derive the contribution of the screened Coulomb interactions
to the S2 formalism and the generalized perturbation method.Comment: 28 pages, 8 figure
Slater-Pauling Behavior of the Half-Ferromagnetic Full-Heusler Alloys
Using the full-potential screened Korringa-Kohn-Rostoker method we study the
full-Heusler alloys based on Co, Fe, Rh and Ru. We show that many of these
compounds show a half-metallic behavior, however in contrast to the
half-Heusler alloys the energy gap in the minority band is extremely small.
These full-Heusler compounds show a Slater-Pauling behavior and the total
spin-magnetic moment per unit cell (M_t) scales with the total number of
valence electrons (Z_t) following the rule: M_t=Z_t-24. We explain why the
spin-down band contains exactly 12 electrons using arguments based on the group
theory and show that this rule holds also for compounds with less than 24
valence electrons. Finally we discuss the deviations from this rule and the
differences compared to the half-Heusler alloys.Comment: 10 pages, 8 figures, revised figure 3, new text adde
Ab initio calculations of partial molar properties in the single-site approximation
We discuss the application of the single-site approximation in calculations of partial molar quantities, e.g., impurity solution energy, segregation energy, and effective chemical potential, which are related to a variation of the composition of an alloy or its nonequivalent parts. We demonstrate that these quantities may be considerably in error if they an obtained in methods based on the single-site approximation for fixed alloy compositions. This error does not reflect a breakdown but rather an inappropriate use of the single-site approximation which is, in fact, found to be sufficiently accurate when properly applied in calculations of partial molar quantities
- …