32 research outputs found

    Oldest Known Eucalyptus Macrofossils Are from South America

    Get PDF
    The evolutionary history of Eucalyptus and the eucalypts, the larger clade of seven genera including Eucalyptus that today have a natural distribution almost exclusively in Australasia, is poorly documented from the fossil record. Little physical evidence exists bearing on the ancient geographical distributions or morphologies of plants within the clade. Herein, we introduce fossil material of Eucalyptus from the early Eocene (ca. 51.9 Ma) Laguna del Hunco paleoflora of Chubut Province, Argentina; specimens include multiple leaves, infructescences, and dispersed capsules, several flower buds, and a single flower. Morphological similarities that relate the fossils to extant eucalypts include leaf shape, venation, and epidermal oil glands; infructescence structure; valvate capsulate fruits; and operculate flower buds. The presence of a staminophore scar on the fruits links them to Eucalyptus, and the presence of a transverse scar on the flower buds indicates a relationship to Eucalyptus subgenus Symphyomyrtus. Phylogenetic analyses of morphological data alone and combined with aligned sequence data from a prior study including 16 extant eucalypts, one outgroup, and a terminal representing the fossils indicate that the fossils are nested within Eucalyptus. These are the only illustrated Eucalyptus fossils that are definitively Eocene in age, and the only conclusively identified extant or fossil eucalypts naturally occurring outside of Australasia and adjacent Mindanao. Thus, these fossils indicate that the evolution of the eucalypt group is not constrained to a single region. Moreover, they strengthen the taxonomic connections between the Laguna del Hunco paleoflora and extant subtropical and tropical Australasia, one of the three major ecologic-geographic elements of the Laguna del Hunco paleoflora. The age and affinities of the fossils also indicate that Eucalyptus subgenus Symphyomyrtus is older than previously supposed. Paleoecological data indicate that the Patagonian Eucalyptus dominated volcanically disturbed areas adjacent to standing rainforest surrounding an Eocene caldera lake

    Audition (abstract)

    No full text

    Secondary walls in hyaline cells of Sphagnum

    No full text

    Intraspecific variation of taeniate bisaccate pollen within permian glossopterid sporangia, from the Prince Charles Mountains, Antarctica

    No full text
    Permineralized sporangia from Late Permian sediments of the Amery Group in the Prince Charles Mountains, East Antarctica, are assigned to Arberiella sp. cf A. africana Pant ana Nautiyal. These sporangia contain between 2000 and 3000 taeniate, saccate pollen grains that are predominantly haploxylonoid bisaccate and referable to the palynotaxon Protohaploxypinus limpidus (Balme and Hennelly) Balme and Flayford. However, the sporangia also contain greater than 4% of diploxylonoid bisaccate forms comparable to Striatopodocarpidites cancellatus (Balme and Hennelly) Hart 1963, together with sporadic monosaccate and trisaccate grains that, if found dispersed, would be assigned to several different pollen form genera. Morphometric analysis of in situ bisaccate pollen grains and taeniate bisaccate pollen in the dispersed palynoflora indicates that in situ grains occupy only the smaller end of the total size range. The tendency for in situ grains to cluster into two different size groups may reflect differential predispersal expansion of the corpus. The in situ pollen grains are variable in most qualitative and quantitative features used for taxonomic discrimination of dispersed taeniate bisaccate pollen, and this may lead to unreliable estimates of Late Permian floristic diversity if an overly restrictive species delimitation scheme is used

    Gondwanan floristic and sedimentological trends during the Permian-Triassic transition: new evidence from the Amery Group, northern Prince Charles Mountains, East Antarctica

    No full text
    The Permian-Triassic boundary within the Amery Group of the Lambert Graben is placed at the contact between the Bainmedart Coal Measures and overlying Flagstone Bench Formation, based on the first regular occurrence of Lunatisporites pellucidus and the first appearance of Aratrisporites and Lepidopteris species. The Permian-Triassic boundary is marked by the extinction of glossopterid and cordaitalean gymnosperms, and by the disappearance or extreme decline of a range of gymnospermous and pteridophytic palynomorph groups. Earliest Triassic macrofloras and palynofloras of the Flagstone Bench Formation are dominated by peltasperms and lycophytes; corystosperms, conifers, and ferns become increasingly common elements of assemblages through the Lower Triassic part of the formation and dominate floras of the Upper Triassic strata. The sedimentary transition across this boundary is conformable but marked by a termination of coal deposits; overlying lowermost Triassic sediments contain only carbonaceous siltstones. Typical red-bed facies are not developed until at least 100 m above the base of the Flagstone Bench Formation, in strata containing ?Middle Triassic palynofloras. Across Gondwana the diachronous disappearance of coal deposits and appearance of red-beds is suggestive of a response to shifting climatic belts, resulting in progressively drier seasonal conditions at successively higher palaeolatitudes during the Late Permian to Middle Triassic. The abrupt and approximately synchronous replacement of plant groups at the Permian-Triassic boundary suggests that factors independent of, or additional to, climate change were responsible for the turnover in terrestrial floras
    corecore