7 research outputs found
The elephant knee joint: morphological and biomechanical considerations
Elephant limbs display unique morphological features which are related mainly to supporting the enormous body weight of the animal. In elephants, the knee joint plays important roles in weight bearing and locomotion, but anatomical data are sparse and lacking in functional analyses. In addition, the knee joint is affected frequently by arthrosis. Here we examined structures of the knee joint by means of standard anatomical techniques in eight African (Loxodonta africana) and three Asian elephants (Elephas maximus). Furthermore, we performed radiography in five African and two Asian elephants and magnetic resonance imaging (MRI) in one African elephant. Macerated bones of 11 individuals (four African, seven Asian elephants) were measured with a pair of callipers to give standardized measurements of the articular parts. In one Asian and three African elephants, kinematic and functional analyses were carried out using a digitizer and according to the helical axis concept. Some peculiarities of healthy and arthrotic knee joints of elephants were compared with human knees. In contrast to those of other quadruped mammals, the knee joint of elephants displays an extended resting position. The femorotibial joint of elephants shows a high grade of congruency and the menisci are extremely narrow and thin. The four-bar mechanism of the cruciate ligaments exists also in the elephant. The main motion of the knee joint is extension–flexion with a range of motion of 142°. In elephants, arthrotic alterations of the knee joint can lead to injury or loss of the cranial (anterior) cruciate ligament
Stem Cells, Patterning and Regeneration in Planarians: Self-Organization at the Organismal Scale.
The establishment of size and shape remains a fundamental challenge in biological research that planarian flatworms uniquely epitomize. Planarians can regenerate complete and perfectly proportioned animals from tiny and arbitrarily shaped tissue pieces; they continuously renew all organismal cell types from abundant pluripotent stem cells, yet maintain shape and anatomy in the face of constant turnover; they grow when feeding and literally degrow when starving, while scaling form and function over as much as a 40-fold range in body length or an 800-fold change in total cell numbers. This review provides a broad overview of the current understanding of the planarian stem cell system, the mechanisms that pattern the planarian body plan and how the interplay between patterning signals and cell fate choices orchestrates regeneration. What emerges is a conceptual framework for the maintenance and regeneration of the planarian body plan on basis of the interplay between pluripotent stem cells and self-organizing patterns and further, the general utility of planarians as model system for the mechanistic basis of size and shape