286 research outputs found
Remote optical addressing of single nano-objects
We present a scheme for remotely addressing single nano-objects by means of
near-field optical microscopy that makes only use of one of the most
fundamental properties of electromagnetic radiation: its polarization. A medium
containing optically active nano-objects is covered with a thin metallic film
presenting sub-wavelength holes. When the optical tip is positioned some
distance away from a hole, surface plasmons in the metal coating are generated
which, by turning the polarization plane of the excitation light, transfer the
excitation towards a chosen hole and induce emission from the underlying
nano-objects. The method, easily applicable to other systems, is demonstrated
for single quantum dots (QDs) at low temperature. It may become a valuable tool
for future optical applications in the nanoworld
Comment on "Far-field microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons"
This is a small comment concerning the work by Smolyaninov et al. in Phys.
Rev. Lett.94, 057401 (2005)
Large variation in the boundary-condition slippage for a rarefied gas flowing between two surfaces
We study the slippage of a gas along mobile rigid walls in the sphere-plane
confined geometry and find that it varies considerably with pressure. The
classical no-slip boundary condition valid at ambient pressure changes
continuously to an almost perfect slip condition in a primary vacuum. Our study
emphasizes the key role played by the mean free-path of the gas molecules on
the interaction between a confined fluid and solid surfaces and further
demonstrates that the macroscopic hydrodynamics approach can be used with
confidence even in a primary vacuum environment where it is intuitively
expected to fail
As-Cast Residual Stresses in an Aluminum Alloy AA6063 Billet: Neutron Diffraction Measurements and Finite Element Modeling
The presence of thermally induced residual stresses, created during the industrial direct chill (DC) casting process of aluminum alloys, can cause both significant safety concerns and the formation of defects during downstream processing. Although numerical models have been previously developed to compute these residual stresses, most of the computations have been validated only against measured surface distortions. Recently, the variation in residual elastic strains in the steady-state regime of casting has been measured as a function of radial position using neutron diffraction (ND) in an AA6063 grain-refined cylindrical billet. In the present study, these measurements are used to show that a well-designed thermomechanical finite element (FE) process model can reproduce relatively well the experimental results. A sensitivity analysis is then carried out to determine the relative effect of the various mechanical parameters when computing the as-cast residual stresses in a cylindrical billet. Two model parameters have been investigated: the temperature when the alloy starts to thermally contract and the plasticity behavior. It is shown that the mechanical properties at low temperatures have a much larger influence on the residual stresses than those at high temperature
Extension of Bethe's diffraction model to conical Geometry: application to near field optics
The generality of the Bethe's two dipole model for light diffraction through
a subwavelength aperture in a conducting plane is studied in the radiation zone
for coated conical fiber tips as those used in near field scanning optical
microscopy. In order to describe the angular radiated power of the tip
theoretically, we present a simple, analytical model for small apertures
(radius < 40 nm) based on a multipole expansion. Our model is able to reproduce
the available experimental results. It proves relatively insensitive to cone
angle and aperture radius and contains, as a first approximation, the empirical
two-dipole model proposed earlier
Simulation of Semi-Solid Material Mechanical Behavior Using a Combined Discrete/Finite Element Method
As a necessary step toward the quantitative prediction of hot tearing defects, a three-dimensional stress-strain simulation based on a combined finite element (FE)/discrete element method (DEM) has been developed that is capable of predicting the mechanical behavior of semisolid metallic alloys during solidification. The solidification model used for generating the initial solid-liquid structure is based on a Voronoi tessellation of randomly distributed nucleation centers and a solute diffusion model for each element of this tessellation. At a given fraction of solid, the deformation is then simulated with the solid grains being modeled using an elastoviscoplastic constitutive law, whereas the remaining liquid layers at grain boundaries are approximated by flexible connectors, each consisting of a spring element and a damper element acting in parallel. The model predictions have been validated against Al-Cu alloy experimental data from the literature. The results show that a combined FE/DEM approach is able to express the overall mechanical behavior of semisolid alloys at the macroscale based on the morphology of the grain structure. For the first time, the localization of strain in the intergranular regions is taken into account. Thus, this approach constitutes an indispensible step towards the development of a comprehensive model of hot tearin
- …