356 research outputs found
Studies of vertical wind profiles at Cape Kennedy, Florida Final report
Vertical wind profiles spectral analysis and numerical wind forecasts at Cape Kenned
Backaction in metasurface etalons
We consider the response of etalons created by a combination of a
conventional mirror and a metasurface, composed of a periodic lattice of metal
scatterers with a resonant response. This geometry has been used previously for
perfect absorption, in so-called Salisbury screens, and for hybridization of
localized plasmons with Fabry-Perot resonances. The particular aspect we
address is if one can assume an environment-independent reflectivity for the
metasurface when calculating the reflectivity of the composite system, as in a
standard Fabry-Perot analysis, or whether the fact that the metasurface
interacts with its own mirror image renormalizes its response. Using lattice
sum theory, we take into account all possible retarded dipole-dipole
interactions of scatterers in the metasurface amongst each other, and through
the mirror. We show that while a layer-by-layer Fabry-Perot formalism captures
the main qualitative features of metasurface etalons, in fact the mirror
modifies both the polarizability and reflectivity of the metasurface in a
fashion that is akin to Drexhage's modification of the radiative properties of
a single dipole.Comment: 10 pages, 5 figure
Strongly nonexponential time-resolved fluorescence of quantum-dot ensembles in three-dimensional photonic crystals
We observe experimentally that ensembles of quantum dots in three-dimensional (3D) photonic crystals reveal strongly nonexponential time-resolved emission. These complex emission decay curves are analyzed with a continuous distribution of decay rates. The log-normal distribution describes the decays well for all studied lattice parameters. The distribution width is identified with variations of the radiative emission rates of quantum dots with various positions and dipole orientations in the unit cell. We find a striking sixfold change of the width of the distribution by varying the lattice parameter. This interpretation qualitatively agrees with the calculations of the 3D projected local density of states. We therefore conclude that fluorescence decay of ensembles of quantum dots is highly nonexponential to an extent that is controlled by photonic crystals
Spontaneous radiative decay of translational levels of an atom near a dielectric surface
We study spontaneous radiative decay of translational levels of an atom in
the vicinity of a semi-infinite dielectric. We systematically derive the
microscopic dynamical equations for the spontaneous decay process. We calculate
analytically and numerically the radiative linewidths and the spontaneous
transition rates for the translational levels. The roles of the interference
between the emitted and reflected fields and of the transmission into the
evanescent modes are clearly identified. Our numerical calculations for the
silica--cesium interaction show that the radiative linewidths of the bound
excited levels with large enough but not too large vibrational quantum numbers
are moderately enhanced by the emission into the evanescent modes and those for
the deep bound levels are substantially reduced by the surface-induced red
shift of the transition frequency
Statistical properties of spontaneous emission near a rough surface
We study the lifetime of the excited state of an atom or molecule near a
plane surface with a given random surface roughness. In particular, we discuss
the impact of the scattering of surface modes within the rough surface. Our
study is completed by considering the lateral correlation length of the decay
rate and the variance discussing its relation to the C0 correlation
A multiple-scattering approach to interatomic interactions and superradiance in inhomogeneous dielectrics
The dynamics of a collection of resonant atoms embedded inside an
inhomogeneous nondispersive and lossless dielectric is described with a dipole
Hamiltonian that is based on a canonical quantization theory. The dielectric is
described macroscopically by a position-dependent dielectric function and the
atoms as microscopic harmonic oscillators. We identify and discuss the role of
several types of Green tensors that describe the spatio-temporal propagation of
field operators. After integrating out the atomic degrees of freedom, a
multiple-scattering formalism emerges in which an exact Lippmann-Schwinger
equation for the electric field operator plays a central role. The equation
describes atoms as point sources and point scatterers for light. First,
single-atom properties are calculated such as position-dependent
spontaneous-emission rates as well as differential cross sections for elastic
scattering and for resonance fluorescence. Secondly, multi-atom processes are
studied. It is shown that the medium modifies both the resonant and the static
parts of the dipole-dipole interactions. These interatomic interactions may
cause the atoms to scatter and emit light cooperatively. Unlike in free space,
differences in position-dependent emission rates and radiative line shifts
influence cooperative decay in the dielectric. As a generic example, it is
shown that near a partially reflecting plane there is a sharp transition from
two-atom superradiance to single-atom emission as the atomic positions are
varied.Comment: 18 pages, 4 figures, to appear in Physical Review
Measuring the quantum efficiency of single radiating dipoles using a scanning mirror
Using scanning probe techniques, we show the controlled manipulation of the
radiation from single dipoles. In one experiment we study the modification of
the fluorescence lifetime of a single molecular dipole in front of a movable
silver mirror. A second experiment demonstrates the changing plasmon spectrum
of a gold nanoparticle in front of a dielectric mirror. Comparison of our data
with theoretical models allows determination of the quantum efficiency of each
radiating dipole.Comment: 4 pages, 4 figure
Size-Dependence of the Wavefunction of Self-Assembled Quantum Dots
The radiative and non-radiative decay rates of InAs quantum dots are measured
by controlling the local density of optical states near an interface. From
time-resolved measurements we extract the oscillator strength and the quantum
efficiency and their dependence on emission energy. From our results and a
theoretical model we determine the striking dependence of the overlap of the
electron and hole wavefunctions on the quantum dot size. We conclude that the
optical quality is best for large quantum dots, which is important in order to
optimally tailor quantum dot emitters for, e.g., quantum electrodynamics
experiments.Comment: 5 pages, 3 figure
Inflammatory activation is associated with a reduced glucocorticoid receptor alpha/beta expression ratio in monocytes of inpatients with melancholic major depressive disorder
In this study, we used new technology to investigate whether a coherent pattern of enhanced expression of inflammatory and other immune activation genes in circulating monocytes is found in patients with major depression. Since a high inflammatory state of monocytes might be related to glucocorticoid resistance, we also included the genes for the two isoforms of the glucocorticoid receptor. For this study, we aimed at finding a similar coherent pattern of inflammatory and immune activation genes in monocytes of patients with MDD and recruited 47 medication-free melancholic MDD inpatients and 42 healthy controls. A quantitative-polymerase chain reaction (Q-PCR) monocyte gene expression analysis was performed using a panel of inflammatory-related genes previously identified as abnormally regulated in mood disorder patients. Selected serum cytokines/ chemokines were assessed using a cytometric bead array. Depressive symptoms were analysed using Hamilton depression scores (HAMD). Thirty-four of the 47 monocyte inflammatory-related genes were significantly upregulated and 2 were significantly downregulated as compared to controls, the latter including the gene for the active GRa in particular in those with a high HAMD score. The reduced GRa expression correlated strongly to the upregulation of the inflammatory genes in monocytes. Serum levels of IL6, IL8, CCL2 and VEGF were significantly increased in patients compared to controls. Our data show the deregulation of two interrelated homoeostatic systems, that is, the immune system and the glucocorticoid system, co-occurring in major depression
Vacuum-field level shifts in a single trapped ion mediated by a single distant mirror
A distant mirror leads to a vacuum-induced level shift in a laser-excited
atom. This effect has been measured with a single mirror 25 cm away from a
single, trapped barium ion. This dispersive action is the counterpart to the
mirror's dissipative effect, which has been shown earlier to effect a change in
the ion's spontaneous decay [J. Eschner et al., Nature 413, 495-498 (2001)].
The experimental data are well described by 8-level optical Bloch equations
which are amended to take into account the presence of the mirror according to
the model in [U. Dorner and P. Zoller, Phys. Rev. A 66, 023816 (2002)].
Observed deviations from simple dispersive behavior are attributed to
multi-level effects.Comment: version accepted by PR
- …