34 research outputs found

    Direct frequency-comb-driven Raman transitions in the terahertz range

    Full text link
    We demonstrate the use of a femtosecond frequency comb to coherently drive stimulated Raman transitions between terahertz-spaced atomic energy levels. More specifically, we address the 3d 2D3/23d~^2D_{3/2} and 3d 2D5/23d~^2D_{5/2} fine structure levels of a single trapped 40^{40}Ca+^+ ion and spectroscopically resolve the transition frequency to be νD=1,819,599,021,534±8\nu_D = 1{,}819{,}599{,}021{,}534 \pm 8 Hz. The achieved accuracy is nearly a factor of five better than the previous best Raman spectroscopy, and is currently limited by the stability of our atomic clock reference. Furthermore, the population dynamics of frequency-comb-driven Raman transitions can be fully predicted from the spectral properties of the frequency comb, and Rabi oscillations with a contrast of 99.3(6)\% and millisecond coherence time has been achieved. Importantly, the technique can be easily generalized to transitions in the sub-kHz to tens of THz range and should be applicable for driving, e.g., spin-resolved rovibrational transitions in molecules and hyperfine transitions in highly charged ions.Comment: 9 pages, 8 figure

    Modes of Oscillation in Radiofrequency Paul Traps

    Full text link
    We examine the time-dependent dynamics of ion crystals in radiofrequency traps. The problem of stable trapping of general three-dimensional crystals is considered and the validity of the pseudopotential approximation is discussed. We derive analytically the micromotion amplitude of the ions, rigorously proving well-known experimental observations. We use a method of infinite determinants to find the modes which diagonalize the linearized time-dependent dynamical problem. This allows obtaining explicitly the ('Floquet-Lyapunov') transformation to coordinates of decoupled linear oscillators. We demonstrate the utility of the method by analyzing the modes of a small `peculiar' crystal in a linear Paul trap. The calculations can be readily generalized to multispecies ion crystals in general multipole traps, and time-dependent quantum wavefunctions of ion oscillations in such traps can be obtained.Comment: 24 pages, 3 figures, v2 adds citations and small correction

    Blackbody-radiation-assisted molecular laser cooling

    Full text link
    The translational motion of molecular ions can be effectively cooled sympathetically to temperatures below 100 mK in ion traps through Coulomb interactions with laser-cooled atomic ions. The distribution of internal rovibrational states, however, gets in thermal equilibrium with the typically much higher temperature of the environment within tens of seconds. We consider a concept for rotational cooling of such internally hot, but translationally cold heteronuclear diatomic molecular ions. The scheme relies on a combination of optical pumping from a few specific rotational levels into a ``dark state'' with redistribution of rotational populations mediated by blackbody radiation.Comment: 4 pages, 5 figure

    Lifetime measurement of the metastable 3d 2D5/2 state in the 40Ca+ ion using the shelving technique on a few-ion string

    Full text link
    We present a measurement of the lifetime of the metastable 3d 2D5/2 state in the 40Ca+ ion, using the so-called shelving technique on a string of five Doppler laser-cooled ions in a linear Paul trap. A detailed account of the data analysis is given, and systematic effects due to unwanted excitation processes and collisions with background gas atoms are discussed and estimated. From a total of 6805 shelving events, we obtain a lifetime tau=1149+/-14(stat.)+/-4(sys.)ms, a result which is in agreement with the most recent measurements.Comment: 10 pages, 7 figures. Submitted for publicatio

    Matter-wave diffraction in time with a linear potential

    Full text link
    Diffraction in time of matter waves incident on a shutter which is removed at time t=0t=0 is studied in the presence of a linear potential. The solution is also discussed in phase space in terms of the Wigner function. An alternative configuration relevant to current experiments where particles are released from a hard wall trap is also analyzed for single-particle states and for a Tonks-Girardeau gas.Comment: 11 pages, 6 figure

    Matter wave pulses characteristics

    Full text link
    We study the properties of quantum single-particle wave pulses created by sharp-edged or apodized shutters with single or periodic openings. In particular, we examine the visibility of diffraction fringes depending on evolution time and temperature; the purity of the state depending on the opening-time window; the accuracy of a simplified description which uses ``source'' boundary conditions instead of solving an initial value problem; and the effects of apodization on the energy width.Comment: 11 pages, 11 figure

    Laser Cooling of two trapped ions: Sideband cooling beyond the Lamb-Dicke limit

    Get PDF
    We study laser cooling of two ions that are trapped in a harmonic potential and interact by Coulomb repulsion. Sideband cooling in the Lamb-Dicke regime is shown to work analogously to sideband cooling of a single ion. Outside the Lamb-Dicke regime, the incommensurable frequencies of the two vibrational modes result in a quasi-continuous energy spectrum that significantly alters the cooling dynamics. The cooling time decreases nonlinearly with the linewidth of the cooling transition, and the effect of trapping states which may slow down the cooling is considerably reduced. We show that cooling to the ground state is possible also outside the Lamb-Dicke regime. We develop the model and use Quantum Monte Carlo calculations for specific examples. We show that a rate equation treatment is a good approximation in all cases.Comment: 13 pages, 10 figure
    corecore