28 research outputs found

    Probe-Based Confocal Laser Endomicroscopy to Guide Real-Time Endoscopic Therapy in Barrett's Esophagus with Dysplasia

    Get PDF
    Probe-based confocal laser endomicroscopy (pCLE) is a novel imaging technique which utilizes a low-power laser light passed through a fiber-optic bundle, within a miniprobe that is advanced into the working channel, to obtain microscopic images of the mucosa. This allows the endoscopist to evaluate the microarchitecture of the gastrointestinal epithelium in real time. At this time pCLE cannot replace histopathology, but it can provide diagnostic information as well as guide therapeutic management in patients with Barrett's esophagus (BE) with high-grade dysplasia (HGD). We describe a retrospective case series in which four patients with BE and biopsy-proven HGD underwent endoscopy with pCLE to direct real-time endoscopic ablation therapy and/or endoscopic mucosal resection (EMR), which was performed in conjunction with pCLE. All four patients had pCLE showing features of HGD. After either EMR or radiofrequency ablation (RFA), pCLE was again used to evaluate the margins after therapy to assure accuracy. In one case, pCLE had features of dysplasia at the margin and further repeat EMR was immediately performed. Another case had a normal-appearing esophagus, but pCLE found features of BE in discrete areas and targeted biopsies were performed, which confirmed BE. This patient subsequently underwent RFA therapy of the residual areas of BE. In conclusion, in patients with BE and dysplasia, pCLE is an effective tool used to target biopsies, guide endoscopic therapy and assess the accuracy of EMR or RFA

    Extensive telomere erosion is consistent with localised clonal expansions in Barrett’s metaplasia

    Get PDF
    Barrett’s oesophagus is a premalignant metaplastic condition that predisposes patients to the development of oesophageal adenocarcinoma. However, only a minor fraction of Barrett’s oesophagus patients progress to adenocarcinoma and it is thus essential to determine bio-molecular markers that can predict the progression of this condition. Telomere dysfunction is considered to drive clonal evolution in several tumour types and telomere length analysis provides clinically relevant prognostic and predictive information. The aim of this work was to use high-resolution telomere analysis to examine telomere dynamics in Barrett’s oesophagus. Telomere length analysis of XpYp, 17p, 11q and 9p, chromosome arms that contain key cancer related genes that are known to be subjected to copy number changes in Barrett’s metaplasia, revealed similar profiles at each chromosome end, indicating that no one specific telomere is likely to suffer preferential telomere erosion. Analysis of patient matched tissues (233 samples from 32 patients) sampled from normal squamous oesophagus, Z-line, and 2 cm intervals within Barrett’s metaplasia, plus oesophago-gastric junction, gastric body and antrum, revealed extensive telomere erosion in Barrett’s metaplasia to within the length ranges at which telomere fusion is detected in other tumour types. Telomere erosion was not uniform, with distinct zones displaying more extensive erosion and more homogenous telomere length profiles. These data are consistent with an extensive proliferative history of cells within Barrett’s metaplasia and are indicative of localised clonal growth. The extent of telomere erosion highlights the potential of telomere dysfunction to drive genome instability and clonal evolution in Barrett’s metaplasia
    corecore