60 research outputs found

    Extensive myocardial infiltration by hemopoietic precursors in a patient with myelodysplastic syndrome

    Get PDF
    BACKGROUND: Although myocardial infiltration with leukemic blasts is a known finding in patients with acute leukemia, this phenomenon in myelodysplasia is not reported in the literature. Cardiac symptoms in patients with myelodysplasia are often due to anemia and may be due to iron overload and side effects of therapy. CASE PRESENTATION: Herein we report the first case of neoplastic infiltration of the heart with associated myocardial necrosis in a patient with myelodysplasia. It was associated with unicellular and multifocal geographic areas of necrosis in the left ventricle and the interventricular septum. It is likely that cardiac compromise in our patient was due to a combination of restrictive cardiomyopathy due to leukemic infiltration, concomitant anemia, cardiac dilatation, conduction blocks and myocardial necrosis. Myocardial necrosis was most likely due to a combination of ischemic damage secondary to anemia and prolonged hypotension and extensive leukemic infiltration. Markedly rapid decrease in ejection fraction from 66% to 33% also suggests the role of ischemia, since leukemic infiltration is not expected to cause this degree of systolic dysfunction over a 24-hour period. The diagnosis was not suspected during life due to concomitant signs and symptoms of anemia, pulmonary infections, and pericardial and pleural effusions. The patient succumbed to cardiac failure. CONCLUSION: Hemopoietic cell infiltration was not considered in the differential diagnosis and contributed to this patient's morbidity and mortality. This case highlights the clinical importance of considering myocardial infiltration in patients with myelodysplasia and cardiac symptoms

    The role of sex in the pathophysiology of pulmonary hypertension

    Get PDF
    Pulmonary arterial hypertension (PAH) is a progressive disease characterised by increased pulmonary vascular resistance and pulmonary artery remodelling as result of increased vascular tone and vascular cell proliferation, respectively. Eventually, this leads to right heart failure. Heritable PAH is caused by a mutation in the bone morphogenetic protein receptor-II (BMPR-II). Female susceptibility to PAH has been known for some time, and most recent figures show a female-to-male ratio of 4:1. Variations in the female sex hormone estrogen and estrogen metabolism modify FPAH risk, and penetrance of the disease in BMPR-II mutation carriers is increased in females. Several lines of evidence point towards estrogen being pathogenic in the pulmonary circulation, and thus increasing the risk of females developing PAH. Recent studies have also suggested that estrogen metabolism may be crucial in the development and progression of PAH with studies indicating that downstream metabolites such as 16α-hydroxyestrone are upregulated in several forms of experimental pulmonary hypertension (PH) and can cause pulmonary artery smooth muscle cell proliferation and subsequent vascular remodelling. Conversely, other estrogen metabolites such as 2-methoxyestradiol have been shown to be protective in the context of PAH. Estrogen may also upregulate the signalling pathways of other key mediators of PAH such as serotonin

    Primary Pulmonary Hypertension

    No full text
    corecore