5 research outputs found

    Burial depth and cultivation influence emergence and persistence of Phalaris paradoxa seed in an Australian sub-tropical environment

    No full text
    Emergence and persistence characteristics of Phalaris paradoxa seeds in no- and minimum-till situations and at different burial depths were studied in a sub-tropical environment. Three experiments were carried out using naturally shed seeds. In the first experiment, seedlings emerged from May through to September each year, although the majority of seedlings emerged in July. In the second experiment with greater seed density, cultivation in March of each year stimulated seedling emergence, altered the periodicity of emergence and accelerated the decline of seeds in the seedbank compared with plots that received no cultivation. The majority of seedlings in the cultivated plots emerged in May whereas the majority of seedlings in the undisturbed plots emerged in July. Emergence accounted for only 4-19% of the seedbank in both experiments over 2 years. Seed persistence was short in both field experiments, with less than 1% remaining 2 years after seed shed. In the third experiment, burial depth and soil disturbance significantly influenced seedling emergence and persistence of seed. Seedlings emerged most from seed mixed in the top 10 cm when subjected to annual soil disturbance, and from seed buried at 2.5 and 5.0 cm depths in undisturbed soil. Emergence was least from seed on the soil surface, and buried at 10 and 15 cm depths in undisturbed soil. Seeds persisted longest when shed onto the soil surface and persisted least when the soil was tilled. These results suggest that strategic cultivation may be a useful management tool, as it will alter the periodicity of emergence allowing use of more effective control options and will deplete the soil seedbank more rapidly

    Signaling interactions during nodule development

    No full text
    Nitrogen fixing bacteria, collectively referred to as rhizobia, are able to trigger the organogenesis of a new organ on legumes, the nodule. The morphogenetic trigger is a Rhizobium-produced lipochitin-oligosaccharide called the Nod factor, which is necessary, and in some legumes sufficient, for triggering nodule development in the absence of the bacterium. Because plant development is substantially influenced by plant hormones, it has been hypothesized that plant hormones (mainly the classical hormones abscisic acid, auxin, cytokinins, ethylene and gibberellic acid) regulate nodule development. in recent years, evidence has shown that Nod factors might act in legumes by changing the internal plant hormone balance, thereby orchestrating the nodule developmental program. In addition, many nonclassical hormonal signals have been found to play a role in nodule development, some of them similar to signals involved in animal development. These compounds include peptide hormones, nitric oxide, reactive oxygen species, jasmonic acid, salicylic acid, uridine, flavonoids and Nod factors themselves. Environmental factors, in particular nitrate, also influence nodule development by affecting the plant hormone status. This review summarizes recent findings on the involvement of classical and nonclassical signals during nodule development with the aim of illustrating the multiple interactions existing between these compounds that have made this area so complicated to analyze
    corecore