4,370 research outputs found

    Implications of SUSY Model Building

    Full text link
    We discuss the motivations and implications of models of low-energy supersymmetry. We present the case for the minimal supersymmetric standard model, which we define to include the minimal particle content and soft supersymmetry-breaking interactions which are universal at the GUT or Planck scale. This model is in agreement with all present experimental results, and yet depends on only a few unknown parameters and therefore maintains considerable predictive power. From the theoretical side, it arises naturally in the context of supergravity models. We discuss radiative electroweak symmetry breaking and the superpartner spectrum in this scenario, with some added emphasis on regions of parameter space leading to unusual or interesting experimental signals at future colliders. We then examine how these results may be affected by various modifications and extensions of the minimal model, including GUT effects, extended gauge, Higgs, and matter sectors, non-universal supersymmetry breaking, non-conservation of R-parity, and dynamical supersymmetry breaking at low energies.Comment: Contribution to the DPF long range study, working group on 'Electroweak Symmetry Breaking and Beyond the SM Physics'; LaTeX file without figures, 60 pages. The complete PS file, including figures, can be obtained by anonymous ftp from ftp://phenom.physics.wisc.edu/pub/preprints/1995/madph-95-879.ps.

    Strong Interaction Effects in Stop Pair Production at e+ee^+ e^- Colliders

    Get PDF
    We discuss perturbative and non-perturbative strong interaction effects in the pair production of stop squarks (t~1\tilde{t}_1) at e+ee^+ e^- colliders. Events with an additional hard gluon allow to detect or exclude stop pair production even in scenarios with very small mass splitting between t~1\tilde{t}_1 and an invisible lightest supersymmetric particle (LSP). Such events can also help to establish that t~1\tilde{t}_1 transforms as a triplet under SU(3)CSU(3)_C. We also carefully study non-perturbative t~1\tilde{t}_1 fragmentation, which is currently not well understood: not only is the t~1\tilde{t}_1 fragmentation function not known very well, but also there are ambiguities in the algorithm employed to model fragmentation. We present numerical results both for CERN LEP-183 and for a proposed future e+ee^+ e^- collider operating at center-of-mass energy s=500\sqrt{s}=500 GeV.Comment: 16 pages and 4 figure

    Effects of SO(10) D-Terms on SUSY Signals at the Tevatron

    Get PDF
    We study signals for the production of superparticles at the Tevatron in supergravity scenarios based on the Grand Unified group SO(10). The breaking of this group introduces extra contributions to the masses of all scalars, described by a single new parameter. We find that varying this parameter can considerably change the size of various expected signals studied in the literature, with different numbers of jets and/or charged leptons in the final state. The ratios of these signal can thus serve as a diagnostic to detect or constrain deviations from the much--studied scenario where all scalar masses are universal at the GUT scale. Moreover, under favorable circumstances some of these signals, and/or new signals involving hard bb-jets, should be observable at the next run of the Tevatron collider even if the average scalar mass lies well above the gluino mass.Comment: 17 pages, LaTeX including 3 postscript figures, uses equation.st

    Open charm contribution to dilepton spectra produced in nuclear collisions at SPS energies

    Get PDF
    Measurements of open charm hadro-production from CERN and Fermilab experiments are reviewed, with particular emphasis on the absolute cross sections and on their A and sqrt(s) dependences. Differential pt and xf cross sections calculated with the Pythia event generator are found to be in reasonable agreement with recent data. The calculations are scaled to nucleus-nucleus collisions and the expected lepton pair yield is deduced. The charm contribution to the low mass dilepton continuum observed by the CERES experiment is found to be negligible. In particular, it is shown that the observed low mass dilepton excess in S-Au collisions cannot be explained by charm enhancement.Comment: 19 pages, 12 eps figures included. To be published in Z.Phys.

    Non-zero trilinear parameter in the mSUGRA model - dark matter and collider signals at Tevatron and LHC

    Full text link
    Phenomenologically viable and interesting regions of parameter space in the minimal super-gravity (mSUGRA) model with small m0m_0 and small m1/2m_{1/2} consistent with the WMAP data on dark matter relic density and the bound on the mass of the lightest Higgs scalar mh> m_h> 114 GeV from LEP2 open up if the rather adhoc assumption A0A_0=0, where A0A_0 is the common trilinear soft breaking parameter, employed in most of the existing analyses is relaxed. Since this region corresponds to relatively light squarks and gluinos which are likely to be probed extensively in the very early stages of the LHC experiments, the consequences of moderate or large negative values of A0A_0 are examined in detail. We find that in this region several processes including lightest supersymmetric particle (LSP) pair annihilation, LSP - lighter tau slepton (τ~1{\tilde \tau}_1) coannihilation and LSP - lighter top squark (t~1{\tilde t}_1) coannihilation contribute to the observed dark matter relic density. %\sout{The possibility that a relic density producing t~1{\tilde t}_1 can be %observed at the current experiments at the Tevatron is wide open.} The possibility that a t~1{\tilde t}_1 that can participate in coannihilation with the lightest neutralino to satisfy the WMAP bound on relic density and at the same time be observed at the current experiments at the Tevatron is wide open. At the LHC a large number of squark - gluino events lead to a very distinctive semi-inclusive signature τ±\tau^\pm+Xτ_\tau (anything without a tau lepton) with a characteristic size much larger than e±e^\pm+Xe_e or μ±\mu^\pm+Xμ_\mu events.Comment: Some minor changes made in the text. To appear in Phys Rev

    Electroweak Contributions to Squark Pair Production at the LHC

    Full text link
    In this paper we compute electroweak contributions to the production of squark pairs at hadron colliders. These include the exchange of electroweak gauge bosons in the s-channel as well as electroweak gaugino exchange in the t- and/or u-channel. In many cases these can interfere with the dominant QCD contributions. As a result, we find sizable contributions to the production of two SU(2) doublet squarks. At the LHC, they amount to 10 to 20% for typical mSUGRA (or CMSSM) scenarios, but in more general scenarios they can vary between -40 and +55%, depending on size and sign of the SU(2) gaugino mass. The electroweak contribution to the total squark pair production rate at the LHC is about 3.5 times smaller.Comment: 28 pages, 9 figure

    Exploring compressed supersymmetry with same-sign top quarks at the Large Hadron Collider

    Full text link
    In compressed supersymmetry, a light top squark naturally mediates efficient neutralino pair annihilation to govern the thermal relic abundance of dark matter. I study the LHC signal of same-sign leptonic top-quark decays from gluino and squark production, which follows from gluino decays to top plus stop followed by the stop decaying to a charm quark and the LSP in these models. Measurements of the numbers of jets with heavy-flavor tags in the same-sign lepton events can be used to confirm the origin of the signal. Summed transverse momentum observables provide an estimate of an effective superpartner mass, which is correlated with the gluino mass. Measurements of invariant mass endpoints from the visible products of gluino decays do not allow direct determination of superpartner masses, but can place constraints on them, including lower bounds on the gluino mass as a function of the top-squark mass.Comment: 22 pages. v2: Discussion of competition between 2-body and 4-body stop decays corrected. References adde

    Looking for a heavy wino LSP in collider and dark matter experiments

    Get PDF
    We investigate the phenomenology of a wino LSP as obtained in AMSB and some string models. The WMAP constraint on the DM relic density implies a wino LSP mass of 2.0-2.3 TeV. We find a viable signature for such a heavy wino at CLIC, operating at its highest CM energy of 5 TeV. One also expects a viable monochromatic γ\gamma-ray signal from its pair-annihilation at the galactic centre at least for cuspy DM halo profiles.Comment: A discussion on non-perturbative effects on annihilation cross section of TeV scale wino LSP added. Version to appear in Phys. Rev. D

    Higgs funnel region of SUSY dark matter for small tanβ\tan\beta and renormalization group effects on pseudoscalar Higgs boson with scalar mass non-universality

    Full text link
    A non-universal scalar mass supergravity type of model is explored where the first two generation of scalars and the third generation of sleptons may be very massive. Lighter or vanishing third generation of squarks as well as Higgs scalars at the unification scale cause the radiative electroweak symmetry breaking constraint to be less prohibitive. Thus, both FCNC/CP-violation problems as well as the naturalness problem are within control. We identify a large slepton mass effect in the RGE of mHD2m_{H_D}^2 (for the down type of Higgs) that may turn the later negative at the electroweak scale even for a small tanβ\tan\beta. A hyperbolic branch/focus point like effect is found for mA2m_A^2 that may result in very light Higgs spectra. The lightest stable particle is dominantly a bino that pair annihilates via Higgs exchange, giving rise to a WMAP satisfied relic density region for all tanβ\tan\beta. Detection prospects of such LSPs in the upcoming dark matter experiments both of direct and indirect types (photon flux) are interesting. The Higgs bosons and the third generation of squarks are light in this scenario and these may be easily probed besides charginos and neutralinos in the early runs of LHC.Comment: 36 pages and 7 Postscript files. Minor changes in the text. Version accepted for publication in Phys. Rev.

    Loop induced Higgs and Z boson couplings to Neutralinos and implications for collider and Dark Matter searches

    Full text link
    We calculate the one-loop induced couplings of two gaugino-like neutralinos to the ZZ and Higgs bosons in the Minimal Supersymmetric Standard Model. These couplings, which vanish at the tree level, can be generated through loops involving fermions and sfermions. We show that, while the neutralino contribution to the invisible ZZ boson decay width remains small, the loop induced couplings to the lightest Higgs boson might be sufficiently large to yield a rate of invisible decays of this Higgs boson that should be detectable at future e+ee^+e^- colliders. We also study the implications of these couplings for direct searches of Dark Matter and show that they can modify appreciably the neutralino-nucleon elastic cross section for some parameter range.Comment: LaTeX with 6 (e)ps and 2 axodraw figures, 25 pages in total; axodraw.sty is included v.2: Added one figure and some discussions; version to appear in PR
    corecore