162 research outputs found

    Experimental quantification of the Fe-valence state at amosite-asbestos boundaries using acSTEM dual-electron energy-loss spectroscopy

    Get PDF
    Determination of the oxidation state and coordination geometry of iron in Fe-bearing minerals expands our knowledge obtained by standard mineralogical characterization. It provides information that is crucial in assessing the potential of minerals to interact with their surrounding environment and to generate reactive oxygen species, which can disrupt the normal function of living organisms. Aberration-corrected scanning transmission electron microscopy dual-electron energy-loss spectroscopy (acSTEM Dual-EELS) has only rarely been applied in environmental and medical mineralogy, but it can yield data that are essential for the description of near-surface and surface mechanisms involved in many environmental and health-related processes. In this study, we have applied the energy loss near-edge structure (ELNES) and L2,3 white-line intensity-ratio methods using both the universal curve and progressively larger integrating windows to verify their effectiveness in satisfactorily describing the valence state of iron at amosite grain boundaries, and, at the same time, to estimate thickness in the same region of interest. The average valence state obtained from acSTEM Dual-EELS and from a simplified geometrical model were in good agreement, and within the range defined by the bulk and the measured surface-valence states. In the specific case presented here, the use of the universal curve was most suitable in defining the valence state of iron at amosite grain boundaries. The study of ELNES revealed an excellent correspondence with the valence state determined by the L2,3 white-line intensity-ratio method through the use of the universal curve, and it seems that the spectra carry some information regarding the coordination geometry of Fe. The combination of visual examination, reconstruction of the grain boundaries through a simple geometrical model, and Dual-EELS investigation is a powerful tool for characterizing the grain boundaries of hazardous minerals and foreseeing their potential activity in an organism, with the possibility to describe toxic mechanisms in a stepwise fashion

    The nature of chlorine-inhibition of photocatalytic degradation of dichloroacetic acid in a TiO2-based microreactor

    Get PDF
    Photocatalytic degradation of dichloroacetic acid (DCA) was studied in a continuous-flow set-up using a titanium microreactor with an immobilized double-layered TiO2 nanoparticle/nanotube film. Chloride ions, formed during the degradation process, negatively affect the photocatalytic efficiency and at a certain concentration (approximately 0.5 mM) completely stop the reaction in the microreactor. Two proposed mechanisms of inhibition with chloride ions, competitive adsorption and photogenerated-hole scavenging, have been proposed and investigated by adsorption isotherms and electron paramagnetic resonance (EPR) measurements. The results show that chloride ions block the DCA adsorption sites on the titania surface and reduce the amount of adsorbed DCA molecules. The scavenging effect of chloride ions during photocatalysis through the formation of chlorine radicals was not detected.Slovenian Research Agency/P2-0084Slovenian Research Agency/J2-4309Slovene Human Resources Development and Scholarship Fund/Ad Futur

    Nanotubular TiOxNy-Supported Ir Single Atoms and Clusters as Thin-Film Electrocatalysts for Oxygen Evolution in Acid Media

    Get PDF
    A versatile approach to the production of cluster- and single atom-based thin-film electrode composites is presented. The developed TiOxNy–Ir catalyst was prepared from sputtered Ti–Ir alloy constituted of 0.8 ± 0.2 at % Ir in α-Ti solid solution. The Ti–Ir solid solution on the Ti metal foil substrate was anodically oxidized to form amorphous TiO2–Ir and later subjected to heat treatment in air and in ammonia to prepare the final catalyst. Detailed morphological, structural, compositional, and electrochemical characterization revealed a nanoporous film with Ir single atoms and clusters that are present throughout the entire film thickness and concentrated at the Ti/TiOxNy–Ir interface as a result of the anodic oxidation mechanism. The developed TiOxNy–Ir catalyst exhibits very high oxygen evolution reaction activity in 0.1 M HClO4, reaching 1460 A g–1Ir at 1.6 V vs reference hydrogen electrode. The new preparation concept of single atom- and cluster-based thin-film catalysts has wide potential applications in electrocatalysis and beyond. In the present paper, a detailed description of the new and unique method and a high-performance thin film catalyst are provided along with directions for the future development of high-performance cluster and single-atom catalysts prepared from solid solutions

    Distinct behavior of localized and delocalized carriers in anatase TiO2 (001) during reaction with O-2

    Get PDF
    Two-dimensional (2D) metallic states induced by oxygen vacancies ( V O s ) at oxide surfaces and interfaces provide opportunities for the development of advanced applications, but the ability to control the behavior of these states is still limited. We used angle resolved photoelectron spectroscopy combined with density-functional theory (DFT) to study the reactivity of V O -induced states at the (001) surface of anatase TiO 2 , where both 2D metallic and deeper lying in-gap states (IGs) are observed. The 2D and IG states exhibit remarkably different evolutions when the surface is exposed to molecular O 2 : while IGs are almost completely quenched, the metallic states are only weakly affected. DFT calculations indeed show that the IGs originate from surface V O s and remain localized at the surface, where they can promptly react with O 2 . In contrast, the metallic states originate from subsurface vacancies whose migration to the surface for recombination with O 2 is kinetically hindered on anatase TiO 2 (001), thus making them much less sensitive to oxygen dosing

    Distinct behaviour of localized and delocalized carriers in anatase TiO2 (001) during reaction with O2

    Get PDF
    Two-dimensional (2D) metallic states induced by oxygen vacancies (VOs) at oxide surfaces and interfaces provide opportunities for the development of advanced applications, but the ability to control the behavior of these states is still limited. We used angle resolved photoelectron spectroscopy combined with density-functional theory (DFT) to study the reactivity of VO-induced states at the (001) surface of anatase TiO2, where both 2D metallic and deeper lying in-gap states (IGs) are observed. The 2D and IG states exhibit remarkably different evolutions when the surface is exposed to molecular O2: while IGs are almost completely quenched, the metallic states are only weakly affected. DFT calculations indeed show that the IGs originate from surface VOs and remain localized at the surface, where they can promptly react with O2. In contrast, the metallic states originate from subsurface vacancies whose migration to the surface for recombination with O2 is kinetically hindered on anatase TiO2 (001), thus making them much less sensitive to oxygen dosing.PostprintPeer reviewe

    Results of international standardised beekeeper surveys of colony losses for winter 2012-2013 : analysis of winter loss rates and mixed effects modelling of risk factors for winter loss.

    Get PDF
    This article presents results of an analysis of winter losses of honey bee colonies from 19 mainly European countries, most of which implemented the standardised 2013 COLOSS questionnaire. Generalised linear mixed effects models (GLMMs) were used to investigate the effects of several factors on the risk of colony loss, including different treatments for Varroa destructor, allowing for random effects of beekeeper and region. Both winter and summer treatments were considered, and the most common combinations of treatment and timing were used to define treatment factor levels. Overall and within country colony loss rates are presented. Significant factors in the model were found to be: percentage of young queens in the colonies before winter, extent of queen problems in summer, treatment of the varroa mite, and access by foraging honey bees to oilseed rape and maize. Spatial variation at the beekeeper level is shown across geographical regions using random effects from the fitted models, both before and after allowing for the effect of the significant terms in the model. This spatial variation is considerable

    Enhancing oxygen evolution functionality through anodization and nitridation of compositionally complex alloy

    Get PDF
    Compositionally complex materials (CCMs) have recently attracted great interest in electrocatalytic applications. To date, very few materials were systematically developed and tested due to the highly difficult preparation of high-surface-area CCMs. In this work, a surface of a compositionally complex FeCoNiCuZn alloy (CCA) was nitridated with subsequent anodization leading to morphological and compositional modifications. Notably, the electrochemical surface area and surface roughness as well as the electrocatalytic activity of the anodized material exhibit significant enhancement. Oxygen evolution reaction (OER) activity by the anodized CCN (CCN–AO) proceeds with remarkably small overpotential (233 mV) at 10 mA cm−2 in 1 M KOH. Experimental characterization indicates that the oxidation state of Co plays a critical role in the Fe–Co–Ni electrocatalyst. The developed approach and design strategy open up immense prospects in the preparation of a new, affordable, scalable and effective type of complex and high-performance electrocatalytic electrodes with tunable properties

    Identification of durable and non-durable FeN x sites in Fe–N–C materials for proton exchange membrane fuel cells

    Get PDF
    While Fe–N–C materials are a promising alternative to platinum for catalysing the oxygen reduction reaction in acidic polymer fuel cells, limited understanding of their operando degradation restricts rational approaches towards improved durability. Here we show that Fe–N–C catalysts initially comprising two distinct FeNx sites (S1 and S2) degrade via the transformation of S1 into iron oxides while the structure and number of S2 were unmodified. Structure–activity correlations drawn from end-of-test 57Fe Mössbauer spectroscopy reveal that both sites initially contribute to the oxygen reduction reaction activity but only S2 substantially contributes after 50 h of operation. From in situ 57Fe Mössbauer spectroscopy in inert gas coupled to calculations of the Mössbauer signature of FeNx moieties in different electronic states, we identify S1 to be a high-spin FeN4C12 moiety and S2 a low- or intermediate-spin FeN4C10 moiety. These insights lay the groundwork for rational approaches towards Fe–N–C cathodes with improved durability in acidic fuel cells. [Figure not available: see fulltext.

    Stress corrosion cracking in Al-Zn-Mg-Cu aluminum alloys in saline environments

    Get PDF
    Copyright 2013 ASM International. This paper was published in Metallurgical and Materials Transactions A, 44A(3), 1230 - 1253, and is made available as an electronic reprint with the permission of ASM International. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplications of any material in this paper for a fee or for commercial purposes, or modification of the content of this paper are prohibited.Stress corrosion cracking of Al-Zn-Mg-Cu (AA7xxx) aluminum alloys exposed to saline environments at temperatures ranging from 293 K to 353 K (20 °C to 80 °C) has been reviewed with particular attention to the influences of alloy composition and temper, and bulk and local environmental conditions. Stress corrosion crack (SCC) growth rates at room temperature for peak- and over-aged tempers in saline environments are minimized for Al-Zn-Mg-Cu alloys containing less than ~8 wt pct Zn when Zn/Mg ratios are ranging from 2 to 3, excess magnesium levels are less than 1 wt pct, and copper content is either less than ~0.2 wt pct or ranging from 1.3 to 2 wt pct. A minimum chloride ion concentration of ~0.01 M is required for crack growth rates to exceed those in distilled water, which insures that the local solution pH in crack-tip regions can be maintained at less than 4. Crack growth rates in saline solution without other additions gradually increase with bulk chloride ion concentrations up to around 0.6 M NaCl, whereas in solutions with sufficiently low dichromate (or chromate), inhibitor additions are insensitive to the bulk chloride concentration and are typically at least double those observed without the additions. DCB specimens, fatigue pre-cracked in air before immersion in a saline environment, show an initial period with no detectible crack growth, followed by crack growth at the distilled water rate, and then transition to a higher crack growth rate typical of region 2 crack growth in the saline environment. Time spent in each stage depends on the type of pre-crack (“pop-in” vs fatigue), applied stress intensity factor, alloy chemistry, bulk environment, and, if applied, the external polarization. Apparent activation energies (E a) for SCC growth in Al-Zn-Mg-Cu alloys exposed to 0.6 M NaCl over the temperatures ranging from 293 K to 353 K (20 °C to 80 °C) for under-, peak-, and over-aged low-copper-containing alloys (~0.8 wt pct), they are typically ranging from 20 to 40 kJ/mol for under- and peak-aged alloys, and based on limited data, around 85 kJ/mol for over-aged tempers. This means that crack propagation in saline environments is most likely to occur by a hydrogen-related process for low-copper-containing Al-Zn-Mg-Cu alloys in under-, peak- and over-aged tempers, and for high-copper alloys in under- and peak-aged tempers. For over-aged high-copper-containing alloys, cracking is most probably under anodic dissolution control. Future stress corrosion studies should focus on understanding the factors that control crack initiation, and insuring that the next generation of higher performance Al-Zn-Mg-Cu alloys has similar longer crack initiation times and crack propagation rates to those of the incumbent alloys in an over-aged condition where crack rates are less than 1 mm/month at a high stress intensity factor
    • 

    corecore