11 research outputs found

    Identifying older diabetic patients at risk of poor glycemic control

    Get PDF
    BACKGROUND: Optimal glycemic control prevents the onset of diabetes complications. Identifying diabetic patients at risk of poor glycemic control could help promoting dedicated interventions. The purpose of this study was to identify predictors of poor short-term and long-term glycemic control in older diabetic in-patients. METHODS: A total of 1354 older diabetic in-patients consecutively enrolled in a multicenter study formed the training population (retrospective arm); 264 patients consecutively admitted to a ward of general medicine formed the testing population (prospective arm). Glycated hemoglobin (HbA1c) was measured on admission and one year after the discharge in the testing population. Independent correlates of a discharge glycemia ≥ 140 mg/dl in the training population were assessed by logistic regression analysis and a clinical prediction rule was developed. The ability of the prediction rule and that of admission HbA1c to predict discharge glycemia ≥ 140 mg/dl and HbA1c > 7% one year after discharge was assessed in the testing population. RESULTS: Selected admission variables (diastolic arterial pressure < 80 mmHg, glycemia = 143–218 mg/dl, glycemia > 218 mg/dl, history of insulinic or combined hypoglycemic therapy, Charlson's index > 2) were combined to obtain a score predicting a discharge fasting glycemia ≥ 140 mg/dl in the training population. A modified score was obtained by adding 1 if admission HbA1c exceeded 7.8%. The modified score was the best predictor of both discharge glycemia ≥ 140 mg/dl (sensitivity = 79%, specificity = 63%) and 1 year HbA1c > 7% (sensitivity = 72%, specificity = 71%) in the testing population. CONCLUSION: A simple clinical prediction rule might help identify older diabetic in-patients at risk of both short and long term poor glycemic control

    Medical communication and technology: a video-based process study of the use of decision aids in primary care

    Get PDF
    Background: much of the research on decision-making in health care has focused on consultation outcomes. Less is known about the process by which clinicians and patients come to a treatment decision. This study aimed to quantitatively describe the behaviour shown by doctors and patients during primary care consultations when three types of decision aids were used to promote treatment decision-making in a randomised controlled trial.Methods: a video-based study set in an efficacy trial which compared the use of paper-based guidelines (control) with two forms of computer-based decision aids (implicit and explicit versions of DARTS II). Treatment decision concerned warfarin anti-coagulation to reduce the risk of stroke in older patients with atrial fibrillation. Twenty nine consultations were video-recorded. A ten-minute 'slice' of the consultation was sampled for detailed content analysis using existing interaction analysis protocols for verbal behaviour and ethological techniques for non-verbal behaviour.Results: median consultation times (quartiles) differed significantly depending on the technology used. Paper-based guidelines took 21 (19–26) minutes to work through compared to 31 (16–41) minutes for the implicit tool; and 44 (39–55) minutes for the explicit tool. In the ten minutes immediately preceding the decision point, GPs dominated the conversation, accounting for 64% (58–66%) of all utterances and this trend was similar across all three arms of the trial. Information-giving was the most frequent activity for both GPs and patients, although GPs did this at twice the rate compared to patients and at higher rates in consultations involving computerised decision aids. GPs' language was highly technically focused and just 7% of their conversation was socio-emotional in content; this was half the socio-emotional content shown by patients (15%). However, frequent head nodding and a close mirroring in the direction of eye-gaze suggested that both parties were active participants in the conversationConclusion: irrespective of the arm of the trial, both patients' and GPs' behaviour showed that they were reciprocally engaged in these consultations. However, even in consultations aimed at promoting shared decision-making, GPs' were verbally dominant, and they worked primarily as information providers for patients. In addition, computer-based decision aids significantly prolonged the consultations, particularly the later phases. These data suggest that decision aids may not lead to more 'sharing' in treatment decision-making and that, in their current form, they may take too long to negotiate for use in routine primary car

    TOI-954 b and K2-329 b: short-period Saturn-mass planets that test whether irradiation leads to inflation

    No full text
    We report the discovery of two short-period Saturn-mass planets, one transiting the G subgiant TOI-954 (TIC 44792534, V = 10.343, T = 9.78) observed in TESS sectors 4 and 5 and one transiting the G dwarf K2-329 (EPIC 246193072, V = 12.70, K = 10.67) observed in K2 campaigns 12 and 19. We confirm and characterize these two planets with a variety of ground-based archival and follow-up observations, including photometry, reconnaissance spectroscopy, precise radial velocity, and high-resolution imaging. Combining all available data, we find that TOI-954 b has a radius of 0.852(-0.062)(+0.053) R-J and a mass of 0.174(-0.017)(+0.018) M-J and is in a 3.68 day orbit, while K2-329 b has a radius of 0.774(-0.024)(+0.026) R-J and a mass if 0.260(-0.022)(+0.020) M-J and is in a 12.46 day orbit. As TOI-954 b is 30 times more irradiated than K2-329 b but more or less the same size, these two planets provide an opportunity to test whether irradiation leads to inflation of Saturn-mass planets and contribute to future comparative studies that explore Saturn-mass planets at contrasting points in their lifetimes

    Science with the Cherenkov Telescope Array

    No full text
    The Cherenkov Telescope Array, CTA, will be the major global observatory for very high energy gamma-ray astronomy over the next decade and beyond. The scientific potential of CTA is extremely broad: from understanding the role of relativistic cosmic particles to the search for dark matter. CTA is an explorer of the extreme universe, probing environments from the immediate neighbourhood of black holes to cosmic voids on the largest scales. Covering a huge range in photon energy from 20 GeV to 300 TeV, CTA will improve on all aspects of performance with respect to current instruments. The observatory will operate arrays on sites in both hemispheres to provide full sky coverage and will hence maximize the potential for the rarest phenomena such as very nearby supernovae, gamma-ray bursts or gravitational wave transients. With 99 telescopes on the southern site and 19 telescopes on the northern site, flexible operation will be possible, with sub-arrays available for specific tasks. CTA will have important synergies with many of the new generation of major astronomical and astroparticle observatories. Multi-wavelength and multi-messenger approaches combining CTA data with those from other instruments will lead to a deeper understanding of the broad-band non-thermal properties of target sources. The CTA Observatory will be operated as an open, proposal-driven observatory, with all data available on a public archive after a pre-defined proprietary period. Scientists from institutions worldwide have combined together to form the CTA Consortium. This Consortium has prepared a proposal for a Core Programme of highly motivated observations. The programme, encompassing approximately 40% of the available observing time over the first ten years of CTA operation, is made up of individual Key Science Projects (KSPs), which are presented in this document
    corecore