495 research outputs found
Comparison of conventional and High Velocity Compaction of alumina powders
International audienceCeramic compacts can be usually prepared by uniaxial pressing in a die made of stainless steel, but the pressure applied is limited and density gradients occur in many cases. Recently a new forming method in powder metallurgy, the High Velocity Compaction (HVC) has been applied to ceramic powders. This method is similar to conventional pressing but consists in making an ram falling down at a very high speed to the upper punch. The kinetic energy is converted into a strike that produces a high pressure in a really short time. By controlling the kinetic energy, it is possible to apply a desired pressure that can be extremely high (up to 1 GPa) without any damage for the tool. The aim of the study is to compare the process conditions and the properties of green compacts elaborated by the two methods (conventional and HVC) for a similar forming pressure: forming pressure, green density (homogeneity), pore size distribution of the tablets, and then the sintering behavior, the shrinkage, the final density and microstructure of the ceramic material are studied
Typical features of Parkinson disease and diagnostic challenges with microdeletion 22q11.2
Objective: To delineate the natural history, diagnosis, and treatment response of Parkinson disease (PD) in individuals with 22q11.2 deletion syndrome (22q11.2DS), and to determine if these patients differ from those with idiopathic PD.
Methods: In this international observational study, we characterized the clinical and neuroimaging features of 45 individuals with 22q11.2DS and PD (mean follow-up 7.5 ± 4.1 years).
Results: 22q11.2DS PD had a typical male excess (32 male, 71.1%), presentation and progression of hallmark motor symptoms, reduced striatal dopamine transporter binding with molecular imaging, and initial positive response to levodopa (93.3%). Mean age at motor symptom onset was relatively young (39.5 ± 8.5 years); 71.4% of cases had early-onset PD (<45 years). Despite having a similar age at onset, the diagnosis of PD was delayed in patients with a history of antipsychotic treatment compared with antipsychotic-naive patients (median 5 vs 1 year, p = 0.001). Preexisting psychotic disorders (24.5%) and mood or anxiety disorders (31.1%) were common, as were early dystonia (19.4%) and a history of seizures (33.3%).
Conclusions: Major clinical characteristics and response to standard treatments appear comparable in 22q11.2DS-associated PD to those in idiopathic PD, although the average age at onset is earlier. Importantly, treatment of preexisting psychotic illness may delay diagnosis of PD in 22q11.DS patients. An index of suspicion and vigilance for complex comorbidity may assist in identifying patients to prioritize for genetic testing
Heavy Quarks and Heavy Quarkonia as Tests of Thermalization
We present here a brief summary of new results on heavy quarks and heavy
quarkonia from the PHENIX experiment as presented at the "Quark Gluon Plasma
Thermalization" Workshop in Vienna, Austria in August 2005, directly following
the International Quark Matter Conference in Hungary.Comment: 8 pages, 5 figures, Quark Gluon Plasma Thermalization Workshop
(Vienna August 2005) Proceeding
Production of phi mesons at mid-rapidity in sqrt(s_NN) = 200 GeV Au+Au collisions at RHIC
We present the first results of meson production in the K^+K^- decay channel
from Au+Au collisions at sqrt(s_NN) = 200 GeV as measured at mid-rapidity by
the PHENIX detector at RHIC. Precision resonance centroid and width values are
extracted as a function of collision centrality. No significant variation from
the PDG accepted values is observed. The transverse mass spectra are fitted
with a linear exponential function for which the derived inverse slope
parameter is seen to be constant as a function of centrality. These data are
also fitted by a hydrodynamic model with the result that the freeze-out
temperature and the expansion velocity values are consistent with the values
previously derived from fitting single hadron inclusive data. As a function of
transverse momentum the collisions scaled peripheral.to.central yield ratio RCP
for the is comparable to that of pions rather than that of protons. This result
lends support to theoretical models which distinguish between baryons and
mesons instead of particle mass for explaining the anomalous proton yield.Comment: 326 authors, 24 pages text, 23 figures, 6 tables, RevTeX 4. To be
submitted to Physical Review C as a regular article. Plain text data tables
for the points plotted in figures for this and previous PHENIX publications
are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
Quadrupole Anisotropy in Dihadron Azimuthal Correlations in Central Au Collisions at =200 GeV
The PHENIX collaboration at the Relativistic Heavy Ion Collider (RHIC)
reports measurements of azimuthal dihadron correlations near midrapidity in
Au collisions at =200 GeV. These measurements
complement recent analyses by experiments at the Large Hadron Collider (LHC)
involving central Pb collisions at =5.02 TeV, which
have indicated strong anisotropic long-range correlations in angular
distributions of hadron pairs. The origin of these anisotropies is currently
unknown. Various competing explanations include parton saturation and
hydrodynamic flow. We observe qualitatively similar, but larger, anisotropies
in Au collisions compared to those seen in Pb collisions at the
LHC. The larger extracted values in Au collisions at RHIC are
consistent with expectations from hydrodynamic calculations owing to the larger
expected initial-state eccentricity compared with that from Pb
collisions. When both are divided by an estimate of the initial-state
eccentricity the scaled anisotropies follow a common trend with multiplicity
that may extend to heavy ion data at RHIC and the LHC, where the anisotropies
are widely thought to arise from hydrodynamic flow.Comment: 375 authors, 7 pages, 5 figures. Published in Phys. Rev. Lett. v2 has
minor changes to text and figures in response to PRL referee suggestions.
Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Single Electrons from Heavy Flavor Decays in p+p Collisions at sqrt(s) = 200 GeV
The invariant differential cross section for inclusive electron production in
p+p collisions at sqrt(s) = 200 GeV has been measured by the PHENIX experiment
at the Relativistic Heavy Ion Collider over the transverse momentum range $0.4
<= p_T <= 5.0 GeV/c at midrapidity (eta <= 0.35). The contribution to the
inclusive electron spectrum from semileptonic decays of hadrons carrying heavy
flavor, i.e. charm quarks or, at high p_T, bottom quarks, is determined via
three independent methods. The resulting electron spectrum from heavy flavor
decays is compared to recent leading and next-to-leading order perturbative QCD
calculations. The total cross section of charm quark-antiquark pair production
is determined as sigma_(c c^bar) = 0.92 +/- 0.15 (stat.) +- 0.54 (sys.) mb.Comment: 329 authors, 6 pages text, 3 figures. Submitted to Phys. Rev. Lett.
Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Centrality categorization for R_{p(d)+A} in high-energy collisions
High-energy proton- and deuteron-nucleus collisions provide an excellent tool
for studying a wide array of physics effects, including modifications of parton
distribution functions in nuclei, gluon saturation, and color neutralization
and hadronization in a nuclear environment, among others. All of these effects
are expected to have a significant dependence on the size of the nuclear target
and the impact parameter of the collision, also known as the collision
centrality. In this article, we detail a method for determining centrality
classes in p(d)+A collisions via cuts on the multiplicity at backward rapidity
(i.e., the nucleus-going direction) and for determining systematic
uncertainties in this procedure. For d+Au collisions at sqrt(s_NN) = 200 GeV we
find that the connection to geometry is confirmed by measuring the fraction of
events in which a neutron from the deuteron does not interact with the nucleus.
As an application, we consider the nuclear modification factors R_{p(d)+A}, for
which there is a potential bias in the measured centrality dependent yields due
to auto-correlations between the process of interest and the backward rapidity
multiplicity. We determine the bias correction factor within this framework.
This method is further tested using the HIJING Monte Carlo generator. We find
that for d+Au collisions at sqrt(s_NN)=200 GeV, these bias corrections are
small and vary by less than 5% (10%) up to p_T = 10 (20) GeV. In contrast, for
p+Pb collisions at sqrt(s_NN) = 5.02 TeV we find these bias factors are an
order of magnitude larger and strongly p_T dependent, likely due to the larger
effect of multi-parton interactions.Comment: 375 authors, 18 pages, 16 figures, 4 tables. Submitted to Phys. Rev.
C. Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Transverse-Momentum Dependence of the J/psi Nuclear Modification in d+Au Collisions at sqrt(s_NN)=200 GeV
We present measured J/psi production rates in d+Au collisions at sqrt(s_NN) =
200 GeV over a broad range of transverse momentum (p_T=0-14 GeV/c) and rapidity
(-2.2<y<2.2). We construct the nuclear-modification factor R_dAu for these
kinematics and as a function of collision centrality (related to impact
parameter for the R_dAu collision). We find that the modification is largest
for collisions with small impact parameters, and observe a suppression
(R_dAu<1) for p_T<4 GeV/c at positive rapidities. At negative rapidity we
observe a suppression for p_T1) for p_T>2
GeV/c. The observed enhancement at negative rapidity has implications for the
observed modification in heavy-ion collisions at high p_T.Comment: 384 authors, 24 pages, 19 figures, 13 tables. Submitted to Phys. Rev.
C. Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are publicly available at
http://www.phenix.bnl.gov/phenix/WWW/info/data/ppg123_data.htm
Suppression of back-to-back hadron pairs at forward rapidity in d+Au Collisions at sqrt(s_NN)=200 GeV
Back-to-back hadron pair yields in d+Au and p+p collisions at sqrt(s_NN)=200
GeV were measured with the PHENIX detector at the Relativistic Heavy Ion
Collider. Rapidity separated hadron pairs were detected with the trigger hadron
at pseudorapidity |eta|<0.35 and the associated hadron at forward rapidity
(deuteron direction, 3.0<eta<3.8). Pairs were also detected with both hadrons
measured at forward rapidity; in this case the yield of back-to-back hadron
pairs in d+Au collisions with small impact parameters is observed to be
suppressed by a factor of 10 relative to p+p collisions. The kinematics of
these pairs is expected to probe partons in the Au nucleus with low fraction x
of the nucleon momenta, where the gluon densities rise sharply. The observed
suppression as a function of nuclear thickness, p_T, and eta points to cold
nuclear matter effects arising at high parton densities.Comment: 381 authors, 6 pages, 4 figures. Published in Phys. Rev. Lett.
(http://link.aps.org/doi/10.1103/PhysRevLett.107.172301). v3 has minor
changes to match published version
(http://www.phenix.bnl.gov/phenix/WWW/info/pp1/128/PhysRevLett.107.172301)
Plain text data tables for points plotted in figures are publicly available
at http://www.phenix.bnl.gov/phenix/WWW/info/data/ppg128_data.htm
Cross section for production via dielectrons in dAu collisions at GeV
We report a measurement of pairs from semileptonic heavy-flavor
decays in Au collisions at GeV. Exploring the mass
and transverse-momentum dependence of the yield, the bottom decay contribution
can be isolated from charm, and quantified by comparison to {\sc pythia} and
{\sc mc@nlo} simulations. The resulting -production cross section is
~mb, which is equivalent to a nucleon-nucleon cross section of
b.Comment: 375 authors, 16 pages, 8 figures, 7 tables, 2008 data. Submitted to
Phys. Rev. C Plain text data tables for the points plotted in figures for
this and previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
- …