18,533 research outputs found

    The effects of fatigue on race walking technique

    Get PDF
    The purpose of this study was to measure the effects of fatigue on gait parameters during race walking. Research has shown that fatigued athletes require gait alterations in order to maintain speed. Eighteen competitive race walkers walked either 5 km or 10 km at a pace equivalent to 105% of their season’s best time. Junior athletes walked 5 km, while senior athletes (mostly 20 km walkers) walked 10 km. Kinetic data were collected using a Gaitway treadmill (1000 Hz). Data were collected at three points during the 5 km walks and at four points during the 10 km walks. Repeated measures ANOVA showed that there were significant differences in impulse and contact time parameters (p < .01). The kinetic and temporal changes occurred as early as 1 km. Athletes are recommended to race at a constant pace to reduce the effects of fatigue

    The measurement of kinetic variables in race walking

    Get PDF
    The purpose of this study was to measure kinetic variables during race walking. Forty national and international race walkers walked either 5 km or 10 km at a pace equivalent to 105% of their season’s best time. Junior athletes walked 5 km, while senior athletes (mostly 20 km walkers) walked 10 km. Kinetic data were collected using a Gaitway treadmill (1000 Hz). Data were collected at the 2.5 km point. Men had longer step lengths than women and walked faster as a result. There was little difference in cadence. Average flight times for each group of athlete were approximately 0.04 s. Senior athletes showed more ‘typical’ race walking vertical force patterns than the juniors; this may be linked to quantity of training experience and gait efficiency. Athletes are advised to develop muscular strength endurance to cope with loading rates upon initial contact

    Gait parameter differences between the legs during race walking

    Get PDF
    Prior research on the effects of fatigue during race walking has shown changes in step length and frequency (Knicker & Loch, 1990: New Studies in Athletics, 5, 25–38). It is unclear whether these changes are consistent for both legs. The purpose of the study was to investigate the differences between the legs for kinetic variables during race walking, and to measure changes occurring because of fatigue. The study was approved by the university’s ethics committee and informed consent was given by fourteen international race walkers, of whom four were females (age mean 28.2, s=7.4 years; stature 1.77, s=0.10 m; mass 66.0, s=11.7 kg). Each participant walked for 10 km on a treadmill (Gaitway, Traunstein). The average treadmill speed was 12.4 km h-1 (s=0.7) and each athlete walked at a constant pace. Data were recorded using the Gaitway treadmill, which has two in-dwelling force plates (Kistler, Winterthur). The sampling rate was 1000 Hz. Data were collected for 30 s at four times during the walk, at 2500 m, 4500 m, 6500 m and 8500 m. Statistical analysis consisted of repeated measures ANOVA. There was a significant difference between the legs for first peak force (F1,13=32.6, P¼0.001, Z2=0.71, power=0.99), weight acceptance rate (F1,13=14.5, P=.002, Z2=0.53, power=0.94), and push-off rate (F1,13=36.2, P=0.001, Z2=0.74, power=1), although these differences did not change significantly with distance walked. There was also a significant difference between the legs’ step lengths (F1,13=30.1, P=0.001, Z2=0.70, power=0.99), midsupport forces (F1,13=9.6, P=0.009, Z2=0.42, power=0.82), and propulsive force peaks (F1,13=20.6, P=0.001, Z2=0.61, power=0.99); the overall values for these variables also increased significantly with distance walked (P<0.001, P=0.009, and P<0.001 respectively). However, there was no effect of distance on the differences between the legs for any variable. The results show significant leg dominance during race walking. Athletes should be aware that these imbalances need rectification to prevent injury and maintain efficient walking technique. The imbalances did not appear to worsen with the onset of fatigue although this may occur over the longer championship distances of 20 and 50 km

    Muscle activity of the stance knee in elite race walkers

    Get PDF
    The purpose of this study was to compare knee muscle activity in race walkers with different knee extension patterns. Three international athletes walked over two force plates recording at 1000 Hz. Video data were simultaneously recorded at 100 Hz; the digitised data were combined with the force data to calculate net muscle moments and joint powers. EMG testing was carried out on three muscles which cross the knee. The two walkers with legal techniques had similar moment and power patterns, whereas the non-legal walker experienced a longer period of eccentric flexor moment at the beginning of stance, which may have affected his ability to extend his knee correctly. After this, all three athletes experienced a period of isometric contraction at the knee. Achieving correct technique requires both strength endurance exercises and mobility development

    Angular kinematics in elite race walking performance

    Get PDF
    The purpose of this study was to measure and analyse the important angular kinematic variables in elite race walking. Research has shown that these variables include knee angle at contact and midstance, rotation of the hips and shoulders, and hip extension velocity. Eighty elite race walkers were videoed during competition and analysed using 3D-DLT with SIMI Motion. The knee angle was found to be almost straight at contact in most athletes and hyperextended by the vertical upright position. Athletes varied in the amount of rotation at the hips and shoulders, with 50 km men having greater hip rotation and 20 km women having greater shoulder rotation. There was much more variation in the values found for elbow and shoulder angles. Very few angular measurements correlated with key race walking variables such as speed, step length and cadence

    Determination of Chilling Requirement of Arkansas Thornless Blackberry Cultivars

    Get PDF
    Little research has been done to determine the chilling requirement for blackberry cultivars. However, field observations from areas where fewer hours of chilling occur indicate that ‘Navaho’ requires more hours of chilling than does ‘Arapaho’. The objective of our study was to determine a method for measuring the chilling requirement using whole plants of two blackberry cultivars, Arapaho and Navaho. One-year old, bare-root plants were field-dug on 26 October 1999 and placed in a cold chamber at 3ºC. Ten single-plant replications of each cultivar were removed at 100-hour intervals up to 1000 hours. The plants were potted and placed in a greenhouse (daily minimum temperature 15ºC), and plants were arranged on benches in a completely randomized design. Budbreak was recorded on a weekly basis. Data for budbreak were analyzed as a two-factor factorial (2 cultivars and 10 chilling treatments) by SAS and means were separated by least significant difference (P = 0.05). Data indicated that the chilling requirement for Arapaho is between 400 and 500 hours. For Navaho, the data indicated the chilling requirement was between 800 and 900 hours. These data support previous observations and indicate that the method used was successful in determining the chilling requirement for blackberries

    Coronae of Stars with Super Solar Elemental Abundances

    Full text link
    Coronal elemental abundances are known to deviate from the photospheric values of their parent star, with the degree of deviation depending on the First Ionization Potential (FIP). This study focuses on the coronal composition of stars with super-solar photospheric abundances. We present the coronal abundances of six such stars: 11 LMi, ι\iota Hor, HR 7291, τ\tau Boo, and α\alpha Cen A and B. These stars all have high-statistics X-ray spectra, three of which are presented for the first time. The abundances measured in this paper are obtained using the line-resolved spectra of the Reflection Grating Spectrometer (RGS) in conjunction with the higher throughput EPIC-pn camera spectra on board the XMM-Newton observatory. A collisionally ionized plasma model with two or three temperature components is found to represent the spectra well. All elements are found to be consistently depleted in the coronae compared to their respective photospheres. For 11 LMi and τ\tau Boo no FIP effect is present, while ι\iota Hor, HR 7291, and α\alpha Cen A and B show a clear FIP trend. These conclusions hold whether the comparison is made with solar abundances or the individual stellar abundances. Unlike the solar corona where low FIP elements are enriched, in these stars the FIP effect is consistently due to a depletion of high FIP elements with respect to actual photospheric abundances. Comparing to solar abundances (instead of stellar) yields the same fractionation trend as on the Sun. In both cases a similar FIP bias is inferred, but different fractionation mechanisms need to be invoked.Comment: 11 pages, 7 figures, submitted to A&A. Comments are welcom
    • …
    corecore