9,083 research outputs found
The Massive Star Forming Region, Cygnus OB2
We present results from a catalogue of 1696 X-ray point sources detected in
the massive star forming region (SFR) Cygnus OB2, the majority of which have
optical or near-IR associations. We derive ages of 3.5 and 5.25 Myrs for the
stellar populations in our two fields, in agreement with recent studies that
suggest that the central 1-3 Myr OB association is surrounded and contaminated
by an older population with an age of 5-10 Myrs. The fraction of sources with
proto-planetary disks, as traced by K-band excesses, are unusually low. Though
this has previously been interpreted as due to the influence of the large
number of OB stars in Cyg OB2, contamination from an older population of stars
in the region could also be responsible. An initial mass function is derived
and found to have a slope of Gamma = -1.27, in agreement with the canonical
value. Finally we introduce the recently approved Chandra Cygnus OB2 Legacy
Survey that will image a 1 square degree area of the Cygnus OB2 association to
a depth of 120 ks, likely detecting ~10,000 stellar X-ray sources.Comment: 4 pages, 3 figures. To appear in the proceedings of IAU Symposium
266, Star Clusters: Basic Galactic Building Blocks Throughout Time and Space,
eds. R. de Grijs and J. Lepin
Chemical analysis of giant stars in the young open cluster NGC 3114
Context: Open clusters are very useful targets for examining possible trends
in galactocentric distance and age, especially when young and old open clusters
are compared. Aims: We carried out a detailed spectroscopic analysis to derive
the chemical composition of seven red giants in the young open cluster NGC
3114. Abundances of C, N, O, Li, Na, Mg, Al, Ca, Si, Ti, Ni, Cr, Y, Zr, La, Ce,
and Nd were obtained, as well as the carbon isotopic ratio. Methods: The
atmospheric parameters of the studied stars and their chemical abundances were
determined using high-resolution optical spectroscopy. We employed the
local-thermodynamic-equilibrium model atmospheres of Kurucz and the spectral
analysis code MOOG. The abundances of the light elements were derived using the
spectral synthesis technique. Results: We found that NGC 3114 has a mean
metallicity of [Fe/H] = -0.01+/-0.03. The isochrone fit yielded a turn-off mass
of 4.2 Msun. The [N/C] ratio is in good agreement with the models predicted by
first dredge-up. We found that two stars, HD 87479 and HD 304864, have high
rotational velocities of 15.0 km/s and 11.0 km/s; HD 87526 is a halo star and
is not a member of NGC 3114. Conclusions: The carbon and nitrogen abundance in
NGC 3114 agree with the field and cluster giants. The oxygen abundance in NGC
3114 is lower compared to the field giants. The [O/Fe] ratio is similar to the
giants in young clusters. We detected sodium enrichment in the analyzed cluster
giants. As far as the other elements are concerned, their [X/Fe] ratios follow
the same trend seen in giants with the same metallicity.Comment: 17 pages, 9 figures, 10 tables; accepted for publication in A&
Diamond degradation in hadron fields
The energy dependence of the concentration of primary displacements induced
by protons and pions in diamond has been calculated in the energy range 50 MeV
- 50 GeV, in the frame of the Lindhard theory. The concentrations of primary
displacements induced by protons and pions have completely different energy
dependencies: the proton degradation is very important at low energies, and is
higher than the pion one in the whole energy range investigated, with the
exception of the delta33 resonance region. Diamond has been found,
theoretically, to be one order of magnitude more resistant to proton and pion
irradiation in respect to silicon.Comment: 7 pages, 3 figure
Mixed Phase in Compact Starts : M-R relations and radial oscillations
It is believed that quark stars or neutron stars with mixed phase in the core
have smaller radii compared to ordinary compact stars. With the recent
observation of several low radius objects, typically a radius of for
star of mass in low mass X-ray binaries (LMXB), it has become very
important to understand the nature of these objects. An accurate determination
of mass-radius relationship of these objects provide us with a physical
laboratory to study the composition of high density matter and the nature of
phase transition. We study the effect of quark and nuclear matter mixed phase
on mass radius relationship and radial oscillations of neutron stars. We find
that the effect of the mixed phase is to decrease the maximum mass of a stable
neutron star and to decrease the radial frequencies .Comment: guest contribution at Int. Workshop on Astronomy & Relativistic
Astrophysics (IWARA 03)held at Olinda-PE (Brazil) from Oct. 12-17,200
Detection of new eruptions in the Magellanic Clouds LBVs R 40 and R 110
We performed a spectroscopic and photometric analysis to study new eruptions
in two luminous blue variables (LBVs) in the Magellanic Clouds. We detected a
strong new eruption in the LBV R40 that reached in 2016, which is
around mag brighter than the minimum registered in 1985. During this new
eruption, the star changed from an A-type to a late F-type spectrum. Based on
photometric and spectroscopic empirical calibrations and synthetic spectral
modeling, we determine that R\,40 reached ~K
during this new eruption. This object is thereby probably one of the coolest
identified LBVs. We could also identify an enrichment of nitrogen and r- and
s-process elements. We detected a weak eruption in the LBV R 110 with a maximum
of mag in 2011, that is, around mag brighter than in the
quiescent phase. On the other hand, this new eruption is about mag
fainter than the first eruption detected in 1990, but the temperature did not
decrease below 8500 K. Spitzer spectra show indications of cool dust in the
circumstellar environment of both stars, but no hot or warm dust was present,
except by the probable presence of PAHs in R\,110. We also discuss a possible
post-red supergiant nature for both stars
- …