13,932 research outputs found
Origin of asymmetries in X-ray emission lines from the blast wave of the 2014 outburst of nova V745 Sco
The symbiotic nova V745 Sco was observed in outburst on 2014 February 6. Its
observations by the Chandra X-ray Observatory at days 16 and 17 have revealed a
spectrum characterized by asymmetric and blue-shifted emission lines. Here we
investigate the origin of these asymmetries through three-dimensional
hydrodynamic simulations describing the outburst during the first 20 days of
evolution. The model takes into account thermal conduction and radiative
cooling and assumes a blast wave propagates through an equatorial density
enhancement. From the simulations, we synthesize the X-ray emission and derive
the spectra as they would be observed with Chandra. We find that both the blast
wave and the ejecta distribution are efficiently collimated in polar directions
due to the presence of the equatorial density enhancement. The majority of the
X-ray emission originates from the interaction of the blast with the equatorial
density enhancement and is concentrated on the equatorial plane as a ring-like
structure. Our "best-fit" model requires a mass of ejecta in the outburst
and an explosion energy erg and reproduces the distribution of emission
measure vs temperature and the evolution of shock velocity and temperature
inferred from the observations. The model predicts asymmetric and blue-shifted
line profiles similar to those observed and explains their origin as due to
substantial X-ray absorption of red-shifted emission by ejecta material. The
comparison of predicted and observed Ne and O spectral line ratios reveals no
signs of strong Ne enhancement and suggests the progenitor is a CO white dwarf.Comment: 16 pages, 17 Figures; accepted for publication on MNRA
An investigation of Fe XVI emission lines in solar and stellar EUV and soft X-ray spectra
New fully relativistic calculations of radiative rates and electron impact
excitation cross sections for Fe XVI are used to determine theoretical
emission-line ratios applicable to the 251 - 361 A and 32 - 77 A portions of
the extreme-ultraviolet (EUV) and soft X-ray spectral regions, respectively. A
comparison of the EUV results with observations from the Solar
Extreme-Ultraviolet Research Telescope and Spectrograph (SERTS) reveals
excellent agreement between theory and experiment. However, for emission lines
in the 32 - 49 A portion of the soft X-ray spectral region, there are large
discrepancies between theory and measurement for both a solar flare spectrum
obtained with the X-Ray Spectrometer/Spectrograph Telescope (XSST) and
observations of Capella from the Low Energy Transmission Grating Spectrometer
(LETGS) on the Chandra X-ray Observatory. These are probably due to blending in
the solar flare and Capella data from both first order lines and from shorter
wavelength transitions detected in second and third order. By contrast, there
is very good agreement between our theoretical results and the XSST and LETGS
observations in the 50 - 77 A wavelength range, contrary to previous results.
In particular, there is no evidence that the Fe XVI emission from the XSST
flare arises from plasma at a much higher temperature than that expected for Fe
XVI in ionization equilibrium, as suggested by earlier work.Comment: 6 pages, 4 tables, 1 figure, MNRAS in pres
X-ray Development of the Classical Nova V2672 Ophiuchi with Suzaku
We report the Suzaku detection of a rapid flare-like X-ray flux amplification
early in the development of the classical nova V2672 Ophiuchi. Two
target-of-opportunity ~25 ks X-ray observations were made 12 and 22 days after
the outburst. The flux amplification was found in the latter half of day 12.
Time-sliced spectra are characterized by a growing supersoft excess with
edge-like structures and a relatively stable optically-thin thermal component
with Ka emission lines from highly ionized Si. The observed spectral evolution
is consistent with a model that has a time development of circumstellar
absorption, for which we obtain the decline rate of ~10-40 % in a time scale of
0.2 d on day 12. Such a rapid drop of absorption and short-term flux
variability on day 12 suggest inhomogeneous ejecta with dense blobs/holes in
the line of sight. Then on day 22 the fluxes of both supersoft and thin-thermal
plasma components become significantly fainter. Based on the serendipitous
results we discuss the nature of this source in the context of both short- and
long-term X-ray behavior.Comment: To appear in PASJ; 9 pages, 5 figures, 2 table
- …